List of the Top 16 Deep Learning Software for PyTorch in 2025

Reviews and comparisons of the top Deep Learning software with a PyTorch integration


Below is a list of Deep Learning software that integrates with PyTorch. Use the filters above to refine your search for Deep Learning software that is compatible with PyTorch. The list below displays Deep Learning software products that have a native integration with PyTorch.
  • 1
    Domino Enterprise MLOps Platform Reviews & Ratings

    Domino Enterprise MLOps Platform

    Domino Data Lab

    Transform data science efficiency with seamless collaboration and innovation.
    The Domino Enterprise MLOps Platform enhances the efficiency, quality, and influence of data science on a large scale, providing data science teams with the tools they need for success. With its open and adaptable framework, Domino allows experienced data scientists to utilize their favorite tools and infrastructures seamlessly. Models developed within the platform transition to production swiftly and maintain optimal performance through cohesive workflows that integrate various processes. Additionally, Domino prioritizes essential security, governance, and compliance features that are critical for enterprise standards. The Self-Service Infrastructure Portal further boosts the productivity of data science teams by granting them straightforward access to preferred tools, scalable computing resources, and a variety of data sets. By streamlining labor-intensive DevOps responsibilities, data scientists can dedicate more time to their core analytical tasks, enhancing overall efficiency. The Integrated Model Factory offers a comprehensive workbench alongside model and application deployment capabilities, as well as integrated monitoring, enabling teams to swiftly experiment and deploy top-performing models while ensuring high performance and fostering collaboration throughout the entire data science process. Finally, the System of Record is equipped with a robust reproducibility engine, search and knowledge management tools, and integrated project management features that allow teams to easily locate, reuse, reproduce, and build upon existing data science projects, thereby accelerating innovation and fostering a culture of continuous improvement. As a result, this comprehensive ecosystem not only streamlines workflows but also enhances collaboration among team members.
  • 2
    Ray Reviews & Ratings

    Ray

    Anyscale

    Effortlessly scale Python code with minimal modifications today!
    You can start developing on your laptop and then effortlessly scale your Python code across numerous GPUs in the cloud. Ray transforms conventional Python concepts into a distributed framework, allowing for the straightforward parallelization of serial applications with minimal code modifications. With a robust ecosystem of distributed libraries, you can efficiently manage compute-intensive machine learning tasks, including model serving, deep learning, and hyperparameter optimization. Scaling existing workloads is straightforward, as demonstrated by how Pytorch can be easily integrated with Ray. Utilizing Ray Tune and Ray Serve, which are built-in Ray libraries, simplifies the process of scaling even the most intricate machine learning tasks, such as hyperparameter tuning, training deep learning models, and implementing reinforcement learning. You can initiate distributed hyperparameter tuning with just ten lines of code, making it accessible even for newcomers. While creating distributed applications can be challenging, Ray excels in the realm of distributed execution, providing the tools and support necessary to streamline this complex process. Thus, developers can focus more on innovation and less on infrastructure.
  • 3
    OpenVINO Reviews & Ratings

    OpenVINO

    Intel

    Accelerate AI development with optimized, scalable, high-performance solutions.
    The Intel® Distribution of OpenVINO™ toolkit is an open-source resource for AI development that accelerates inference across a variety of Intel hardware. Designed to optimize AI workflows, this toolkit empowers developers to create sophisticated deep learning models for uses in computer vision, generative AI, and large language models. It comes with built-in model optimization features that ensure high throughput and low latency while reducing model size without compromising accuracy. OpenVINO™ stands out as an excellent option for developers looking to deploy AI solutions in multiple environments, from edge devices to cloud systems, thus promising both scalability and optimal performance on Intel architectures. Its adaptable design not only accommodates numerous AI applications but also enhances the overall efficiency of modern AI development projects. This flexibility makes it an essential tool for those aiming to advance their AI initiatives.
  • 4
    Comet Reviews & Ratings

    Comet

    Comet

    Streamline your machine learning journey with enhanced collaboration tools.
    Oversee and enhance models throughout the comprehensive machine learning lifecycle. This process encompasses tracking experiments, overseeing models in production, and additional functionalities. Tailored for the needs of large enterprise teams deploying machine learning at scale, the platform accommodates various deployment strategies, including private cloud, hybrid, or on-premise configurations. By simply inserting two lines of code into your notebook or script, you can initiate the tracking of your experiments seamlessly. Compatible with any machine learning library and for a variety of tasks, it allows you to assess differences in model performance through easy comparisons of code, hyperparameters, and metrics. From training to deployment, you can keep a close watch on your models, receiving alerts when issues arise so you can troubleshoot effectively. This solution fosters increased productivity, enhanced collaboration, and greater transparency among data scientists, their teams, and even business stakeholders, ultimately driving better decision-making across the organization. Additionally, the ability to visualize model performance trends can greatly aid in understanding long-term project impacts.
  • 5
    DeepSpeed Reviews & Ratings

    DeepSpeed

    Microsoft

    Optimize your deep learning with unparalleled efficiency and performance.
    DeepSpeed is an innovative open-source library designed to optimize deep learning workflows specifically for PyTorch. Its main objective is to boost efficiency by reducing the demand for computational resources and memory, while also enabling the effective training of large-scale distributed models through enhanced parallel processing on the hardware available. Utilizing state-of-the-art techniques, DeepSpeed delivers both low latency and high throughput during the training phase of models. This powerful tool is adept at managing deep learning architectures that contain over one hundred billion parameters on modern GPU clusters and can train models with up to 13 billion parameters using a single graphics processing unit. Created by Microsoft, DeepSpeed is intentionally engineered to facilitate distributed training for large models and is built on the robust PyTorch framework, which is well-suited for data parallelism. Furthermore, the library is constantly updated to integrate the latest advancements in deep learning, ensuring that it maintains its position as a leader in AI technology. Future updates are expected to enhance its capabilities even further, making it an essential resource for researchers and developers in the field.
  • 6
    Google Cloud Deep Learning VM Image Reviews & Ratings

    Google Cloud Deep Learning VM Image

    Google

    Effortlessly launch powerful AI projects with pre-configured environments.
    Rapidly establish a virtual machine on Google Cloud for your deep learning initiatives by utilizing the Deep Learning VM Image, which streamlines the deployment of a VM pre-loaded with crucial AI frameworks on Google Compute Engine. This option enables you to create Compute Engine instances that include widely-used libraries like TensorFlow, PyTorch, and scikit-learn, so you don't have to worry about software compatibility issues. Moreover, it allows you to easily add Cloud GPU and Cloud TPU capabilities to your setup. The Deep Learning VM Image is tailored to accommodate both state-of-the-art and popular machine learning frameworks, granting you access to the latest tools. To boost the efficiency of model training and deployment, these images come optimized with the most recent NVIDIA® CUDA-X AI libraries and drivers, along with the Intel® Math Kernel Library. By leveraging this service, you can quickly get started with all the necessary frameworks, libraries, and drivers already installed and verified for compatibility. Additionally, the Deep Learning VM Image enhances your experience with integrated support for JupyterLab, promoting a streamlined workflow for data science activities. With these advantageous features, it stands out as an excellent option for novices and seasoned experts alike in the realm of machine learning, ensuring that everyone can make the most of their projects. Furthermore, the ease of use and extensive support make it a go-to solution for anyone looking to dive into AI development.
  • 7
    Horovod Reviews & Ratings

    Horovod

    Horovod

    Revolutionize deep learning with faster, seamless multi-GPU training.
    Horovod, initially developed by Uber, is designed to make distributed deep learning more straightforward and faster, transforming model training times from several days or even weeks into just hours or sometimes minutes. With Horovod, users can easily enhance their existing training scripts to utilize the capabilities of numerous GPUs by writing only a few lines of Python code. The tool provides deployment flexibility, as it can be installed on local servers or efficiently run in various cloud platforms like AWS, Azure, and Databricks. Furthermore, it integrates well with Apache Spark, enabling a unified approach to data processing and model training in a single, efficient pipeline. Once implemented, Horovod's infrastructure accommodates model training across a variety of frameworks, making transitions between TensorFlow, PyTorch, MXNet, and emerging technologies seamless. This versatility empowers users to adapt to the swift developments in machine learning, ensuring they are not confined to a single technology. As new frameworks continue to emerge, Horovod's design allows for ongoing compatibility, promoting sustained innovation and efficiency in deep learning projects.
  • 8
    Amazon EC2 Trn1 Instances Reviews & Ratings

    Amazon EC2 Trn1 Instances

    Amazon

    Optimize deep learning training with cost-effective, powerful instances.
    Amazon's Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium processors, are meticulously engineered to optimize deep learning training, especially for generative AI models such as large language models and latent diffusion models. These instances significantly reduce costs, offering training expenses that can be as much as 50% lower than comparable EC2 alternatives. Capable of accommodating deep learning models with over 100 billion parameters, Trn1 instances are versatile and well-suited for a variety of applications, including text summarization, code generation, question answering, image and video creation, recommendation systems, and fraud detection. The AWS Neuron SDK further streamlines this process, assisting developers in training their models on AWS Trainium and deploying them efficiently on AWS Inferentia chips. This comprehensive toolkit integrates effortlessly with widely used frameworks like PyTorch and TensorFlow, enabling users to maximize their existing code and workflows while harnessing the capabilities of Trn1 instances for model training. Consequently, this approach not only facilitates a smooth transition to high-performance computing but also enhances the overall efficiency of AI development processes. Moreover, the combination of advanced hardware and software support allows organizations to remain at the forefront of innovation in artificial intelligence.
  • 9
    Amazon EC2 G5 Instances Reviews & Ratings

    Amazon EC2 G5 Instances

    Amazon

    Unleash unparalleled performance with cutting-edge graphics technology!
    Amazon EC2 has introduced its latest G5 instances powered by NVIDIA GPUs, specifically engineered for demanding graphics and machine-learning applications. These instances significantly enhance performance, offering up to three times the speed for graphics-intensive operations and machine learning inference, with a remarkable 3.3 times increase in training efficiency compared to the earlier G4dn models. They are perfectly suited for environments that depend on high-quality real-time graphics, making them ideal for remote workstations, video rendering, and gaming experiences. In addition, G5 instances provide a robust and cost-efficient platform for machine learning practitioners, facilitating the training and deployment of larger and more intricate models in fields like natural language processing, computer vision, and recommendation systems. They not only achieve graphics performance that is three times higher than G4dn instances but also feature a 40% enhancement in price performance, making them an attractive option for users. Moreover, G5 instances are equipped with the highest number of ray tracing cores among all GPU-based EC2 offerings, significantly improving their ability to manage sophisticated graphic rendering tasks. This combination of features establishes G5 instances as a highly appealing option for developers and enterprises eager to utilize advanced technology in their endeavors, ultimately driving innovation and efficiency in various industries.
  • 10
    Amazon EC2 P4 Instances Reviews & Ratings

    Amazon EC2 P4 Instances

    Amazon

    Unleash powerful machine learning with scalable, budget-friendly performance!
    Amazon's EC2 P4d instances are designed to deliver outstanding performance for machine learning training and high-performance computing applications within the cloud. Featuring NVIDIA A100 Tensor Core GPUs, these instances are capable of achieving impressive throughput while offering low-latency networking that supports a remarkable 400 Gbps instance networking speed. P4d instances serve as a budget-friendly option, allowing businesses to realize savings of up to 60% during the training of machine learning models and providing an average performance boost of 2.5 times for deep learning tasks when compared to previous P3 and P3dn versions. They are often utilized in large configurations known as Amazon EC2 UltraClusters, which effectively combine high-performance computing, networking, and storage capabilities. This architecture enables users to scale their operations from just a few to thousands of NVIDIA A100 GPUs, tailored to their particular project needs. A diverse group of users, such as researchers, data scientists, and software developers, can take advantage of P4d instances for a variety of machine learning tasks including natural language processing, object detection and classification, as well as recommendation systems. Additionally, these instances are well-suited for high-performance computing endeavors like drug discovery and intricate data analyses. The blend of remarkable performance and the ability to scale effectively makes P4d instances an exceptional option for addressing a wide range of computational challenges, ensuring that users can meet their evolving needs efficiently.
  • 11
    Fabric for Deep Learning (FfDL) Reviews & Ratings

    Fabric for Deep Learning (FfDL)

    IBM

    Seamlessly deploy deep learning frameworks with unmatched resilience.
    Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have greatly improved the ease with which deep learning models can be designed, trained, and utilized. Fabric for Deep Learning (FfDL, pronounced "fiddle") provides a unified approach for deploying these deep-learning frameworks as a service on Kubernetes, facilitating seamless functionality. The FfDL architecture is constructed using microservices, which reduces the reliance between components, enhances simplicity, and ensures that each component operates in a stateless manner. This architectural choice is advantageous as it allows failures to be contained and promotes independent development, testing, deployment, scaling, and updating of each service. By leveraging Kubernetes' capabilities, FfDL creates an environment that is highly scalable, resilient, and capable of withstanding faults during deep learning operations. Furthermore, the platform includes a robust distribution and orchestration layer that enables efficient processing of extensive datasets across several compute nodes within a reasonable time frame. Consequently, this thorough strategy guarantees that deep learning initiatives can be carried out with both effectiveness and dependability, paving the way for innovative advancements in the field.
  • 12
    Exafunction Reviews & Ratings

    Exafunction

    Exafunction

    Transform deep learning efficiency and cut costs effortlessly!
    Exafunction significantly boosts the effectiveness of your deep learning inference operations, enabling up to a tenfold increase in resource utilization and savings on costs. This enhancement allows developers to focus on building their deep learning applications without the burden of managing clusters and optimizing performance. Often, deep learning tasks face limitations in CPU, I/O, and network capabilities that restrict the full potential of GPU resources. However, with Exafunction, GPU code is seamlessly transferred to high-utilization remote resources like economical spot instances, while the main logic runs on a budget-friendly CPU instance. Its effectiveness is demonstrated in challenging applications, such as large-scale simulations for autonomous vehicles, where Exafunction adeptly manages complex custom models, ensures numerical integrity, and coordinates thousands of GPUs in operation concurrently. It works seamlessly with top deep learning frameworks and inference runtimes, providing assurance that models and their dependencies, including any custom operators, are carefully versioned to guarantee reliable outcomes. This thorough approach not only boosts performance but also streamlines the deployment process, empowering developers to prioritize innovation over infrastructure management. Additionally, Exafunction’s ability to adapt to the latest technological advancements ensures that your applications stay on the cutting edge of deep learning capabilities.
  • 13
    SynapseAI Reviews & Ratings

    SynapseAI

    Habana Labs

    Accelerate deep learning innovation with seamless developer support.
    Our accelerator hardware is meticulously designed to boost the performance and efficiency of deep learning while emphasizing developer usability. SynapseAI seeks to simplify the development journey by offering support for popular frameworks and models, enabling developers to utilize the tools they are already comfortable with and prefer. In essence, SynapseAI, along with its comprehensive suite of tools, is customized to assist deep learning developers in their specific workflows, empowering them to create projects that meet their individual preferences and needs. Furthermore, Habana-based deep learning processors not only protect existing software investments but also make it easier to develop innovative models, addressing the training and deployment requirements of a continuously evolving range of models influencing the fields of deep learning, generative AI, and large language models. This focus on flexibility and support guarantees that developers can excel in an ever-changing technological landscape, fostering innovation and creativity in their projects. Ultimately, SynapseAI's commitment to enhancing developer experience is vital in driving the future of AI advancements.
  • 14
    Amazon EC2 P5 Instances Reviews & Ratings

    Amazon EC2 P5 Instances

    Amazon

    Transform your AI capabilities with unparalleled performance and efficiency.
    Amazon's EC2 P5 instances, equipped with NVIDIA H100 Tensor Core GPUs, alongside the P5e and P5en variants utilizing NVIDIA H200 Tensor Core GPUs, deliver exceptional capabilities for deep learning and high-performance computing endeavors. These instances can boost your solution development speed by up to four times compared to earlier GPU-based EC2 offerings, while also reducing the costs linked to machine learning model training by as much as 40%. This remarkable efficiency accelerates solution iterations, leading to a quicker time-to-market. Specifically designed for training and deploying cutting-edge large language models and diffusion models, the P5 series is indispensable for tackling the most complex generative AI challenges. Such applications span a diverse array of functionalities, including question-answering, code generation, image and video synthesis, and speech recognition. In addition, these instances are adept at scaling to accommodate demanding high-performance computing tasks, such as those found in pharmaceutical research and discovery, thereby broadening their applicability across numerous industries. Ultimately, Amazon EC2's P5 series not only amplifies computational capabilities but also fosters innovation across a variety of sectors, enabling businesses to stay ahead of the curve in technological advancements. The integration of these advanced instances can transform how organizations approach their most critical computational challenges.
  • 15
    Amazon EC2 Trn2 Instances Reviews & Ratings

    Amazon EC2 Trn2 Instances

    Amazon

    Unlock unparalleled AI training power and efficiency today!
    Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are purpose-built for the effective training of generative AI models, including large language and diffusion models, and offer remarkable performance. These instances can provide cost reductions of as much as 50% when compared to other Amazon EC2 options. Supporting up to 16 Trainium2 accelerators, Trn2 instances deliver impressive computational power of up to 3 petaflops utilizing FP16/BF16 precision and come with 512 GB of high-bandwidth memory. They also include NeuronLink, a high-speed, nonblocking interconnect that enhances data and model parallelism, along with a network bandwidth capability of up to 1600 Gbps through the second-generation Elastic Fabric Adapter (EFAv2). When deployed in EC2 UltraClusters, these instances can scale extensively, accommodating as many as 30,000 interconnected Trainium2 chips linked by a nonblocking petabit-scale network, resulting in an astonishing 6 exaflops of compute performance. Furthermore, the AWS Neuron SDK integrates effortlessly with popular machine learning frameworks like PyTorch and TensorFlow, facilitating a smooth development process. This powerful combination of advanced hardware and robust software support makes Trn2 instances an outstanding option for organizations aiming to enhance their artificial intelligence capabilities, ultimately driving innovation and efficiency in AI projects.
  • 16
    NVIDIA NGC Reviews & Ratings

    NVIDIA NGC

    NVIDIA

    Accelerate AI development with streamlined tools and secure innovation.
    NVIDIA GPU Cloud (NGC) is a cloud-based platform that utilizes GPU acceleration to support deep learning and scientific computations effectively. It provides an extensive library of fully integrated containers tailored for deep learning frameworks, ensuring optimal performance on NVIDIA GPUs, whether utilized individually or in multi-GPU configurations. Moreover, the NVIDIA train, adapt, and optimize (TAO) platform simplifies the creation of enterprise AI applications by allowing for rapid model adaptation and enhancement. With its intuitive guided workflow, organizations can easily fine-tune pre-trained models using their specific datasets, enabling them to produce accurate AI models within hours instead of the conventional months, thereby minimizing the need for lengthy training sessions and advanced AI expertise. If you're ready to explore the realm of containers and models available on NGC, this is the perfect place to begin your journey. Additionally, NGC’s Private Registries provide users with the tools to securely manage and deploy their proprietary assets, significantly enriching the overall AI development experience. This makes NGC not only a powerful tool for AI development but also a secure environment for innovation.
  • Previous
  • You're on page 1
  • Next