-
1
MATLAB
The MathWorks
Empower your design and analysis with seamless computational solutions.
MATLAB® provides a specialized desktop environment designed for iterative design and analysis, complemented by a programming language that facilitates the straightforward expression of matrix and array computations. It includes the Live Editor, which allows users to craft scripts that seamlessly integrate code, outputs, and formatted text within an interactive notebook format. The toolboxes offered by MATLAB are carefully crafted, rigorously tested, and extensively documented for user convenience. Moreover, MATLAB applications enable users to visualize the interactions between various algorithms and their datasets. Users can enhance their outcomes through iterative processes and can easily create a MATLAB program to replicate or automate their workflows. Additionally, the platform supports scaling analyses across clusters, GPUs, and cloud environments with little adjustment to existing code. There is no necessity to completely change your programming habits or to learn intricate big data techniques. MATLAB allows for the automatic conversion of algorithms into C/C++, HDL, and CUDA code, permitting execution on embedded processors or FPGA/ASIC systems. In addition, when combined with Simulink, MATLAB bolsters the support for Model-Based Design methodologies, proving to be a flexible tool for both engineers and researchers. This versatility underscores MATLAB as a vital asset for addressing a broad spectrum of computational issues, ensuring that users can effectively tackle their specific challenges with confidence.
-
2
COMSOL Multiphysics
Comsol Group
Empower innovation with advanced multiphysics modeling capabilities.
Leverage the power of COMSOL's multiphysics software to accurately model real-world designs, devices, and processes. This adaptable simulation platform is built on advanced numerical methods and offers extensive features for both fully coupled multiphysics and individual physics modeling. Users can follow a comprehensive modeling workflow that encompasses everything from creating geometries to conducting postprocessing analyses. The software includes user-friendly tools that facilitate the development and implementation of simulation applications. COMSOL Multiphysics® guarantees a uniform user interface and experience across a wide range of engineering disciplines and physical phenomena. Moreover, specific functionalities can be accessed through add-on modules tailored to areas such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can also choose from various LiveLink™ products to ensure seamless integration with CAD systems and other external software. In addition, applications can be deployed via COMSOL Compiler™ and COMSOL Server™, allowing the creation of models and simulation applications driven by physics within this robust software ecosystem. The extensive capabilities of COMSOL empower engineers to push the boundaries of innovation while enhancing their projects effectively, ultimately leading to improved efficiency and creativity in design and analysis processes.
-
3
XFdtd
Remcom
Revolutionize electromagnetic analysis with powerful 3D simulation software.
XFdtd is an advanced 3D electromagnetic simulation software created by Remcom. This robust solver excels in electromagnetic simulations, providing outstanding computational performance and simplifying the analysis of complex electromagnetic issues. It caters to a wide range of applications, such as microwave device and antenna design, as well as radar and scattering analysis. Furthermore, XFdtd is applied in various fields, including biomedical research, automotive radar systems, waveguide investigations, military and defense initiatives, RFID technology, and assessments of electromagnetic compatibility and interference. Its adaptability and extensive capabilities render it an invaluable resource for both engineers and researchers in their diverse projects. The continuous updates and improvements further enhance its functionality, ensuring it remains at the forefront of electromagnetic simulation technology.
-
4
HyperWorks
Altair Engineering
Streamlined workflows empower engineers to innovate and collaborate.
HyperWorks provides user-friendly and efficient workflows that harness specialized knowledge, thereby boosting team efficiency. This capability facilitates the streamlined creation of modern, intricate, and interconnected products. With the enhanced HyperWorks experience, engineers can transition effortlessly between different domains, enabling them to produce reports without needing to exit the modeling environment. HyperWorks empowers users to design, investigate, and refine their creations. The platform can precisely simulate a wide range of elements, including structures, mechanisms, fluids, electrical systems, embedded software, and manufacturing techniques. Customized workflows specifically target various engineering tasks, enhancing processes such as fatigue analysis, computational fluid dynamics (CFD) modeling, concept design optimization, and design exploration. Each user interface is crafted to be intuitive and tailored to individual needs, ensuring a consistent and user-friendly experience throughout. Moreover, the versatility of HyperWorks enhances collaboration among team members, fostering innovation and accelerating project timelines.
-
5
FORGE
Transvalor
Transform your forging processes with innovative simulation technology.
FORGE® stands out as a leading software solution designed for simulating both hot and cold forging processes, proudly representing Transvalor's flagship offering for nearly 35 years and attracting a diverse global clientele. This innovative software meets the needs of companies engaged in the production of forged components across multiple industries. A key feature of FORGE® is its point tracking capability, which allows for the detection of cold-shut areas within components and forecasts the metal fibering that is vital for achieving superior mechanical properties in forgings. It also utilizes sophisticated marking methods to illustrate segregations within the billet's core and to identify any flow-through irregularities. Additionally, FORGE® generates projections regarding forging loads, energy usage, torques, and the power necessary for each deformation phase, aiding users in evaluating the appropriateness of equipment demands, optimizing load distribution across various stages, and uncovering potential die balancing and deflection issues. The software's extensive functionalities enable manufacturers to significantly improve their production efficiency and the quality of their products, ultimately leading to enhanced competitiveness in the market. Overall, FORGE® not only streamlines the forging process but also positions manufacturers for success in an increasingly demanding industrial landscape.
-
6
SIMULIA
Dassault Systèmes
Transforming insights into innovation with advanced simulation solutions.
Through the 3DEXPERIENCE® platform, SIMULIA offers sophisticated simulation tools that enable users to gain deeper insights into and evaluate their surroundings. The applications provided by SIMULIA facilitate the evaluation of material and product performance, reliability, and safety, before any physical prototypes are created. These cutting-edge tools can simulate a wide range of scenarios, including structures, fluids, multibody interactions, and electromagnetics, while ensuring seamless integration with product data, even for intricate assemblies. The technology for modeling, simulation, and visualization is thoroughly embedded within the 3DEXPERIENCE platform, encompassing features for process capture, publication, and reuse. By connecting simulation data, results, and intellectual property to the platform, users can enhance their existing investment in simulation technologies, converting these elements into invaluable assets that stimulate innovation for all participants. This integration not only boosts efficiency in workflows but also promotes collaborative progress across various teams and initiatives, ultimately leading to more innovative solutions. As a result, organizations can harness the full potential of their resources while driving continuous improvement in their projects.