List of the Best LiveLink for MATLAB Alternatives in 2025
Explore the best alternatives to LiveLink for MATLAB available in 2025. Compare user ratings, reviews, pricing, and features of these alternatives. Top Business Software highlights the best options in the market that provide products comparable to LiveLink for MATLAB. Browse through the alternatives listed below to find the perfect fit for your requirements.
-
1
FEATool Multiphysics
Precise Simulation
Simplify complex simulations with versatile, user-friendly tools.FEATool Multiphysics is a comprehensive physics simulation toolbox that simplifies the process of using finite element analysis (FEA) and computational fluid dynamics (CFD). It features an integrated platform with a cohesive user interface that supports various multi-physics solvers, including OpenFOAM, SU2 Code, and FEniCS. This versatility enables users to effectively model interconnected physical phenomena across a range of applications, such as fluid dynamics, thermal transfer, structural analysis, electromagnetics, acoustics, and chemical engineering. As a reliable resource, FEATool Multiphysics is widely utilized by engineers and researchers in sectors like energy, automotive, and semiconductor manufacturing, enhancing their ability to conduct complex simulations with ease. Its user-friendly design makes it accessible for both seasoned professionals and newcomers alike. -
2
Ansys Motor-CAD
Ansys
Accelerate electric machine design with rapid multiphysics simulations.Ansys MotorCAD serves as a specialized tool tailored for the design of electric machines. It enables rapid simulations of multiphysics throughout the complete torque-speed operating spectrum. With MotorCAD, engineers can assess various motor topologies within this full range, leading to designs that are fine-tuned for size, efficiency, and overall performance. The software comprises four modules—Emag, Therm Lab, and Mech—facilitating swift and iterative multiphysics calculations, thereby allowing users to transition from initial concepts to final designs more expeditiously. Moreover, MotorCAD empowers users to investigate a wider array of motor topologies and thoroughly analyze the effects of advanced losses during the preliminary phases of electromechanical design, aided by its efficient data input system. The latest update introduces robust new features aimed at optimizing design, enhancing multi-physics analysis, and improving system modeling for electric motors. Additionally, the speed of multiphysics simulations across the entire torque-speed spectrum ensures that engineers can make informed decisions quickly. In summary, MotorCAD significantly accelerates the design process while providing comprehensive analytical capabilities. -
3
COMSOL Multiphysics
Comsol Group
Empower innovation with advanced multiphysics modeling capabilities.Leverage the power of COMSOL's multiphysics software to accurately model real-world designs, devices, and processes. This adaptable simulation platform is built on advanced numerical methods and offers extensive features for both fully coupled multiphysics and individual physics modeling. Users can follow a comprehensive modeling workflow that encompasses everything from creating geometries to conducting postprocessing analyses. The software includes user-friendly tools that facilitate the development and implementation of simulation applications. COMSOL Multiphysics® guarantees a uniform user interface and experience across a wide range of engineering disciplines and physical phenomena. Moreover, specific functionalities can be accessed through add-on modules tailored to areas such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can also choose from various LiveLink™ products to ensure seamless integration with CAD systems and other external software. In addition, applications can be deployed via COMSOL Compiler™ and COMSOL Server™, allowing the creation of models and simulation applications driven by physics within this robust software ecosystem. The extensive capabilities of COMSOL empower engineers to push the boundaries of innovation while enhancing their projects effectively, ultimately leading to improved efficiency and creativity in design and analysis processes. -
4
MATLAB® provides a specialized desktop environment designed for iterative design and analysis, complemented by a programming language that facilitates the straightforward expression of matrix and array computations. It includes the Live Editor, which allows users to craft scripts that seamlessly integrate code, outputs, and formatted text within an interactive notebook format. The toolboxes offered by MATLAB are carefully crafted, rigorously tested, and extensively documented for user convenience. Moreover, MATLAB applications enable users to visualize the interactions between various algorithms and their datasets. Users can enhance their outcomes through iterative processes and can easily create a MATLAB program to replicate or automate their workflows. Additionally, the platform supports scaling analyses across clusters, GPUs, and cloud environments with little adjustment to existing code. There is no necessity to completely change your programming habits or to learn intricate big data techniques. MATLAB allows for the automatic conversion of algorithms into C/C++, HDL, and CUDA code, permitting execution on embedded processors or FPGA/ASIC systems. In addition, when combined with Simulink, MATLAB bolsters the support for Model-Based Design methodologies, proving to be a flexible tool for both engineers and researchers. This versatility underscores MATLAB as a vital asset for addressing a broad spectrum of computational issues, ensuring that users can effectively tackle their specific challenges with confidence.
-
5
NVIDIA Modulus
NVIDIA
Transforming physics with AI-driven, real-time simulation solutions.NVIDIA Modulus is a sophisticated neural network framework designed to seamlessly combine the principles of physics, encapsulated through governing partial differential equations (PDEs), with data to develop accurate, parameterized surrogate models that deliver near-instantaneous responses. This framework is particularly suited for individuals tackling AI-driven physics challenges or those creating digital twin models to manage complex non-linear, multi-physics systems, ensuring comprehensive assistance throughout their endeavors. It offers vital elements for developing physics-oriented machine learning surrogate models that adeptly integrate physical laws with empirical data insights. Its adaptability makes it relevant across numerous domains, such as engineering simulations and life sciences, while supporting both forward simulations and inverse/data assimilation tasks. Moreover, NVIDIA Modulus facilitates parameterized representations of systems capable of addressing various scenarios in real time, allowing users to conduct offline training once and then execute real-time inference multiple times. By doing so, it empowers both researchers and engineers to discover innovative solutions across a wide range of intricate problems with remarkable efficiency, ultimately pushing the boundaries of what's achievable in their respective fields. As a result, this framework stands as a transformative tool for advancing the integration of AI in the understanding and simulation of physical phenomena. -
6
DataMelt
jWork.ORG
Unlock powerful data insights with versatile computational excellence!DataMelt, commonly referred to as "DMelt," is a versatile environment designed for numerical computations, data analysis, data mining, and computational statistics. It facilitates the plotting of functions and datasets in both 2D and 3D, enables statistical testing, and supports various forms of data analysis, numeric computations, and function minimization. Additionally, it is capable of solving linear and differential equations, and provides methods for symbolic, linear, and non-linear regression. The Java API included in DataMelt integrates neural network capabilities alongside various data manipulation techniques utilizing different algorithms. Furthermore, it offers support for symbolic computations through Octave/Matlab programming elements. As a computational environment based on a Java platform, DataMelt is compatible with multiple operating systems and supports various programming languages, distinguishing it from other statistical tools that often restrict users to a single language. This software uniquely combines Java, the most prevalent enterprise language globally, with popular data science scripting languages such as Jython (Python), Groovy, and JRuby, thereby enhancing its versatility and user accessibility. Consequently, DataMelt emerges as an essential tool for researchers and analysts seeking a comprehensive solution for complex data-driven tasks. -
7
Simcenter STAR-CCM+
Siemens Digital Industries
Revolutionize design with integrated multiphysics simulation solutions.Simcenter STAR-CCM+ is a sophisticated multiphysics computational fluid dynamics (CFD) software that facilitates the simulation of products under realistic conditions. What sets this software apart is its integration of automated design exploration and optimization within the CFD toolkit, making it accessible for engineers. Its all-encompassing platform features CAD, automated meshing, multiphysics CFD capabilities, and advanced postprocessing tools, which empower engineers to comprehensively explore the entire design landscape, leading to faster and more informed decision-making in design. The insights gleaned from using Simcenter STAR-CCM+ help transform the design process into a more strategic endeavor, ultimately yielding innovative products that exceed customer expectations. Optimizing a battery's performance across its full range of operations is a challenging task requiring the simultaneous adjustment of multiple parameters. In this regard, Simcenter offers a robust simulation environment specifically designed for analyzing and designing electrochemical systems, which promotes a thorough understanding of their dynamics. This integrated approach equips engineers with the tools to confidently address complex challenges, thereby enhancing their ability to innovate effectively. Overall, the capabilities of Simcenter STAR-CCM+ not only streamline the design process but also inspire groundbreaking advancements in technology. -
8
CAESIM
Adaptive Research
Revolutionizing simulation technology with advanced, user-friendly tools.Adaptive Research is thrilled to announce the launch of the CAESIM 2024 simulation platform, which is ready for immediate deployment and boasts advanced computational fluid dynamics modeling alongside multi-physics capabilities. This newest iteration of the software presents cutting-edge tools and features that simplify the modeling workflow, allowing CFD engineers to obtain swift simulation results with increased effectiveness. Furthermore, the platform is designed to improve user experience by offering enhanced interfaces and functionalities, ensuring that users can navigate the software with ease. By incorporating these innovations, Adaptive Research aims to set a new standard in simulation technology. -
9
LTE MAC Lab
IS Wireless
Revolutionize LTE network simulations with advanced modeling capabilities.LTE MAC Lab serves as an advanced simulation platform tailored for thorough system-level evaluations, functioning seamlessly within the Matlab framework. This innovative tool empowers users to adeptly model and assess the efficacy of wireless LTE network implementations while obtaining valuable insights into the intricate dynamics of radio interface operations. It effectively represents the variable nature of a simulated HetNet RAN, focusing on critical Radio Resource Management features, such as scheduling, carrier aggregation, handover techniques, and link adaptation methods. Furthermore, the platform integrates a variety of models to simulate propagation phenomena, including path loss, shadowing, and multipath effects, along with diverse mobility scenarios to improve the precision of simulations. Researchers and engineers can utilize LTE MAC Lab to investigate and refine network performance within a controlled environment, ultimately contributing to advancements in wireless communication technologies. By facilitating detailed experimentation, this tool plays a crucial role in the continuous evolution of LTE networks. -
10
OnScale Solve
OnScale
Revolutionizing engineering simulations with powerful cloud capabilities.OnScale emerges as a trailblazing platform in the realm of Cloud Engineering Simulation, combining sophisticated multiphysics solver technology with the limitless power of cloud supercomputers. This cutting-edge solution allows engineers to run numerous full 3D multiphysics simulations simultaneously, facilitating the development of genuine Digital Prototypes that accurately reflect the operational dynamics of complex high-tech devices. Aiming to provide an outstanding experience in Cloud Engineering Simulation, OnScale Solve is crafted to be intuitive, resilient, and efficient. It functions effortlessly on both public and private cloud infrastructures and includes a user-friendly web interface, an API for seamless integration into existing workflows, customizable scripting options for personalized engineering analyses, and plugins that enhance its modeling capabilities. Additionally, OnScale Solve empowers engineers to synthetically produce data essential for training sophisticated AI/ML algorithms, thus fostering technological innovation. This all-encompassing platform ensures engineers possess the necessary tools to redefine the limits of simulation and design, ultimately driving progress in engineering disciplines. By integrating these features, OnScale not only enhances the simulation process but also encourages a collaborative environment for engineers to explore new frontiers in technology. -
11
MatConvNet
VLFeat
Empower your computer vision projects with innovative algorithms.The open source library VLFeat provides an extensive selection of renowned algorithms aimed at computer vision, excelling in tasks like image understanding and the matching and extraction of local features. Its diverse set of algorithms includes Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, the agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, and large scale SVM training, among others. Written in C for optimal performance and compatibility, it features MATLAB interfaces that improve user accessibility and is supported by detailed documentation. This library works seamlessly across various operating systems such as Windows, Mac OS X, and Linux, which enhances its usability across multiple platforms. Furthermore, the MatConvNet toolbox is specifically crafted for MATLAB, focusing on the implementation of Convolutional Neural Networks (CNNs) for a range of computer vision tasks. Renowned for its user-friendliness and efficiency, MatConvNet allows for the execution and training of advanced CNNs, offering numerous pre-trained models suited for applications like image classification, segmentation, face detection, and text recognition. The synergistic use of these powerful tools delivers a comprehensive framework that supports researchers and developers in advancing their projects in computer vision, ensuring they are equipped with cutting-edge resources and capabilities. This combination fosters innovation within the field by enabling seamless experimentation and development. -
12
RunMat
Dystr
Experience lightning-fast MATLAB execution without any fees!RunMat, created by Dystr, acts as a rapid, no-cost, and open-source alternative for running MATLAB scripts. It enables users to effortlessly run their existing MATLAB scripts while fully honoring the language's structure and key semantics, all without the burden of licensing fees or vendor dependencies. Utilizing an advanced compiler, RunMat provides remarkably fast computation speeds, launches in a mere 5 milliseconds, and features integrated GPU optimization, all encapsulated as a sleek, cross-platform executable. This combination makes it particularly appealing for individuals in need of both efficiency and versatility in their numerical computing endeavors, offering a practical solution for a wide range of applications. -
13
EMWorks
EMWorks
Elevate your engineering designs with seamless electromagnetic simulations.EMWorks provides high-quality electromagnetic simulation software tailored for professionals in electrical and electronics engineering, featuring comprehensive multiphysics capabilities. Their solutions are seamlessly integrated with SOLIDWORKS and Autodesk Inventor®, serving a diverse array of applications, including electromechanical systems, power electronics, antennas, RF and microwave components, while also maintaining power and signal integrity in high-speed interconnects. A standout product, EMS, empowers users to simulate and optimize electromagnetic and electromechanical devices such as transformers, electric motors, actuators, and sensors within the SOLIDWORKS® and Autodesk® Inventor® platforms. Furthermore, EMWorks2D is a dedicated 2D electromagnetic simulation tool that specializes in planar and axis-symmetric geometries, also fully integrated into SOLIDWORKS, enabling users to conduct rapid simulations before advancing to 3D models. This capability significantly streamlines the design process, ultimately speeding up the entire product development cycle, which allows engineers to enhance their designs with greater efficiency. By utilizing these state-of-the-art tools, engineers can maximize the performance of their electronic projects while conserving precious time in their workflows, thus improving overall productivity. In a field where timeliness and precision are crucial, EMWorks stands out as an indispensable resource for engineering professionals. -
14
Visplore
Visplore
Transform messy data into actionable insights effortlessly today!Visplore transforms the challenging task of analyzing extensive and messy time series data into a straightforward and highly effective process. This innovation is particularly beneficial for process specialists, research and development engineers, quality assurance managers, industry advisors, and anyone who has faced the burdensome job of preparing intricate measurement data. Understanding your data is crucial for realizing its potential value, and Visplore provides user-friendly tools that help you rapidly uncover correlations, patterns, trends, and additional insights like never before. The process of cleansing and annotating data is what distinguishes valuable information from worthless noise. Within Visplore, you can manage dirty data—such as outliers, anomalies, and alterations in processes—as effortlessly as you would with a drawing application. Moreover, seamless integrations with Python, R, Matlab, and various other data sources make incorporating Visplore into existing workflows remarkably easy. The platform maintains impressive performance even when handling millions of data records, enabling users to engage in unexpectedly innovative analyses, which can lead to groundbreaking discoveries. Ultimately, Visplore empowers users to focus on deriving insights rather than getting bogged down in data preparation. -
15
Working Model 2D
Design Simulation Technologies
Revolutionize design with powerful, efficient motion simulations today!Working Model is recognized as the leading motion simulation software in the world. Utilizing powerful analytical tools allows you to validate designs effectively. The swift "run-analyze-refine" method empowers you to make adjustments to your designs before producing any physical prototypes, thereby greatly reducing the necessity for them. You retain complete control over the simulation environment throughout the process. Create, run, and improve simulations quickly with a library of pre-built objects and constraints at your fingertips. You can start, stop, reset, step through, or pause the simulation as needed. Assess your latest design by analyzing multiple metrics such as force, torque, and acceleration on every component. Results can be displayed as vectors or numerical values, configurable in either English or metric units. Moreover, the capability to import your 2D CAD drawings in DXF format is seamless. Data can be entered from equations, sliders, and DDE links compatible with both MATLAB and Excel. You can build bodies and specify their mass properties, initial velocity, and electrostatic charge, among other attributes. Additionally, you have the flexibility to run or adjust scripts to improve simulations, document models, and a variety of other tasks. You can also craft engaging presentations by adding images, which enhances the overall presentation of your work. This all-encompassing tool revolutionizes how designers and engineers tackle motion simulation challenges, making the process more efficient and impactful. Ultimately, it fosters creativity and innovation in design practices across various industries. -
16
FLOW-3D
Flow Science
Transform product development with precise, user-friendly CFD solutions.Accelerate your product development and streamline the launch process with FLOW-3D, an exceptionally accurate CFD software skilled in solving transient and free-surface issues. Along with our state-of-the-art postprocessor, FlowSight, FLOW-3D provides a full multiphysics suite. This adaptable CFD simulation platform enables engineers to investigate the intricate interactions of liquids and gases across a wide range of industrial fields and physical phenomena. With a dedicated focus on multi-phase and free surface applications, FLOW-3D serves multiple industries, such as microfluidics, biomedical technology, civil water infrastructure, aerospace, consumer goods, additive manufacturing, inkjet printing, laser welding, automotive, offshore industries, and the energy sector. As a highly effective multiphysics tool, FLOW-3D merges functionality with user-friendliness and advanced capabilities to assist engineers in reaching their modeling objectives, thereby fostering innovation and enhancing efficiency in their projects. By utilizing FLOW-3D, organizations can tackle intricate challenges and guarantee that their designs are refined for success in competitive environments, paving the way for future advancements and breakthroughs in technology. -
17
OriginPro
OriginLab
Unleash powerful data analysis with seamless graphing capabilities!Origin is the top choice for data analysis and graphing among over 500,000 engineers and scientists in various government and commercial labs globally. With an easy-to-navigate interface, it caters to beginners while also offering customization options as users become more experienced. Origin’s graphs and analytical outputs can seamlessly adapt to any modifications in data or parameters, enabling you to establish templates and execute batch operations directly through the user-friendly interface, negating the need for programming knowledge. You can enhance Origin's functionality by downloading free applications from our website, which also allow connectivity to other software such as MATLAB™, LabVIEW™, or Microsoft(c) Excel. Additionally, you can develop custom functions within Origin using our scripting and C languages. For those seeking even more powerful capabilities, OriginPro elevates data analysis with its advanced analytical tools, building upon the comprehensive features that Origin offers. This makes OriginPro an invaluable asset for professionals requiring robust data solutions. -
18
YAKINDU Model Viewer
itemis AG
Effortlessly visualize, explore, and understand complex models today!The YAKINDU Model Viewer (YMV) is a dedicated application designed to visualize models created with MATLAB Simulink, showcasing block diagrams that bear a strong resemblance to those found in Simulink itself. This viewer empowers users to effectively explore, navigate, and search through large and complex models. Its browser-like navigation allows for quick immersion into the system's hierarchy, making it user-friendly. In addition, YMV features sophisticated visualization tools, signal tracing, requirements tracking, and gesture-based interactions, among other functionalities. The tool presents various perspectives to illustrate both the model's architecture and the attributes of its components, thereby enriching the user experience. By offering an intuitive interface and a wide range of capabilities, YAKINDU Model Viewer greatly facilitates the comprehension of intricate systems. Users can leverage these features to enhance their understanding and streamline their workflow when working with complicated models. -
19
TRANSWELD
TRANSVALOR
Revolutionize welding reliability with advanced predictive simulation software.In sectors where the reliability of welded constructions is paramount, TRANSWELD® delivers an innovative and all-encompassing solution for forecasting possible welding flaws. This state-of-the-art simulation software utilizes multi-physical models to faithfully represent the behavior of metals in both their liquid and semi-solid states, thus allowing for thorough investigations into material changes. Additionally, TRANSWELD® supports the analysis of microstructures within solid-state welds. By leveraging this advanced tool, users can confirm that their welded parts adhere to necessary specifications without the necessity for physical prototypes. The software is entirely predictive, offering users digital insights into welding operations under realistic scenarios. For example, it provides the ability to visualize the movement of the heat source during simulations of various techniques, such as laser and arc welding, thereby improving both comprehension and efficiency in the welding process. These functionalities not only expedite production but also significantly diminish the likelihood of defects in the final output, ultimately leading to enhanced quality and reliability in welded products. By integrating TRANSWELD® into the welding process, companies can stay ahead of potential issues and ensure superior performance in their projects. -
20
Model Predictive Control Toolbox
MathWorks
Streamline your control system development with advanced versatility!The Model Predictive Control Toolbox™ provides an extensive array of functions, an easy-to-use app, Simulink® blocks, and useful reference examples to streamline the development of model predictive control (MPC) systems. It effectively addresses linear problems by allowing the development of implicit, explicit, adaptive, and gain-scheduled MPC approaches. For more intricate nonlinear situations, users can implement both single-stage and multi-stage nonlinear MPC. Moreover, this toolbox comes equipped with deployable optimization solvers and allows for the incorporation of custom solvers as needed. Users can evaluate the performance of their controllers through closed-loop simulations within MATLAB® and Simulink environments. In the context of automated driving, the toolbox offers blocks and examples that comply with MISRA C® and ISO 26262 standards, which facilitates the rapid start of projects related to lane keeping assistance, path planning, path following, and adaptive cruise control. It enables the design of implicit, gain-scheduled, and adaptive MPC controllers that can solve quadratic programming (QP) problems while also facilitating the generation of explicit MPC controllers based on implicit designs. Furthermore, the toolbox accommodates discrete control set MPC for addressing mixed-integer QP challenges, thus expanding its versatility for various control systems. With its rich set of features, the toolbox guarantees that both beginners and seasoned professionals can successfully apply advanced control strategies in their projects. This versatility ensures that users across multiple domains can find relevant applications for their specific needs. -
21
Webots
Cyberbotics
Unleash your robotic creativity with powerful simulation capabilities.Webots, developed by Cyberbotics, is a dynamic open-source application designed for desktop use across various platforms, aimed at the modeling, programming, and simulation of robotic systems. This comprehensive tool offers a rich development environment, featuring an extensive library filled with assets such as robots, sensors, actuators, objects, and materials, which significantly accelerates the prototyping process and boosts the productivity of robotics projects. Moreover, users can import existing CAD models from applications like Blender or URDF, and they can utilize OpenStreetMap data to enhance their simulations with authentic geographical features. Webots supports multiple programming languages, including C, C++, Python, Java, MATLAB, and ROS, providing developers with the flexibility to select the most suitable programming language for their projects. Its modern graphical user interface, paired with a powerful physics engine and OpenGL rendering capabilities, allows for the realistic simulation of a diverse spectrum of robotic systems, encompassing wheeled robots, industrial arms, legged robots, drones, and autonomous vehicles. The application is widely utilized in various sectors including industry, education, and research for tasks such as robot prototyping, AI algorithm testing, and the exploration of innovative robotic ideas. In essence, Webots is recognized as an invaluable tool for individuals and organizations aiming to push the boundaries of robotics and simulation technology, making it integral to the future of robotics development. -
22
CoppeliaSim
Coppelia Robotics
Unleash robotics innovation with unparalleled simulation versatility today!CoppeliaSim, developed by Coppelia Robotics, is a highly versatile and powerful simulator for robotics, catering to a multitude of applications including rapid algorithm development, factory automation modeling, swift prototyping, verification, educational uses in robotics, remote monitoring, safety assessments, and the creation of digital twins. Its architecture is designed for distributed control, enabling the individual management of objects and models through embedded scripts in languages such as Python and Lua, C/C++ plugins, and remote API clients that accommodate various programming languages like Java, MATLAB, Octave, C, C++, and Rust, alongside customized solutions. The simulator's compatibility with five distinct physics engines—MuJoCo, Bullet Physics, ODE, Newton, and Vortex Dynamics—allows for rapid and customizable computations of dynamics, resulting in highly realistic simulations that accurately depict physical interactions, including collision responses, grasping actions, and the dynamics of soft bodies, strings, ropes, and fabrics. Moreover, CoppeliaSim supports both forward and inverse kinematics for an extensive array of mechanical systems, significantly enhancing its applicability across different robotics domains. This unique combination of flexibility and functionality positions CoppeliaSim as an invaluable resource for both researchers and industry professionals in the robotics sector, driving innovation and development in this rapidly evolving field. -
23
Ansys SPEOS
Ansys
Transform your designs with innovative light simulation technology.Ansys SPEOS assesses the lighting and optical functionalities of different systems, effectively minimizing prototyping costs and timelines while improving overall product effectiveness. Its intuitive and comprehensive interface enhances productivity by utilizing GPU technology for simulation previews and seamlessly integrates with the Ansys multiphysics platform. The software has received validation from the International Commission on Illumination (CIE) through the CIE 171:2006 test cases, which attests to the accuracy of its light modeling and underscores the benefits of adopting Ansys SPEOS. Illuminate your virtual designs and effortlessly explore 3D light propagation with this powerful tool. Equipped with the SPEOS Live preview feature, it offers cutting-edge simulation and rendering capabilities that encourage interactive product design. By achieving precise simulations on the initial attempt, users can greatly cut down on iteration times while improving their decision-making processes, streamlining the automatic design of optical surfaces, light guides, and lenses. This forward-thinking methodology not only enhances workflow efficiency but also results in superior outcomes for optical engineering endeavors. With the ability to visualize and adjust designs in real-time, teams can ensure that their projects meet the highest standards of quality and performance. -
24
RT-LAB
OPAL-RT TECHNOLOGIES
Unleash innovation with powerful, real-time simulation solutions today!OPAL's RT-LAB is a real-time simulation platform that merges high performance with an improved user interface. This program is seamlessly integrated with MATLAB/Simulink®, enabling intricate model-based designs to effectively engage with real-world scenarios. It facilitates sophisticated real-time simulations across various fields, including aerospace, power electronics, and power systems. Nearly two decades ago, RT-LAB was initially utilized in the Canada Arm project for the Canadian Space Agency. Since then, it has transformed systems engineering across multiple domains, including space, terrestrial applications, and maritime environments. With RT-LAB, engineers and researchers can rapidly create innovative prototypes while conducting comprehensive testing essential for advancing new technologies. Furthermore, its versatility ensures that it remains a vital tool for tackling the challenges of modern engineering. -
25
SwiftComp
AnalySwift
Revolutionize composite modeling with precision and simplicity today!SwiftComp is a cutting-edge composite simulation software that merges multiscale and multiphysics functionalities, delivering the accuracy of 3D finite element analysis (FEA) while retaining the straightforwardness of conventional engineering models. This revolutionary tool streamlines the modeling process for engineers, enabling them to handle composites as effortlessly as metals while preserving precision and capturing detailed microstructural features. It provides cohesive modeling for one-dimensional structures (such as beams), two-dimensional forms (like plates or shells), and three-dimensional configurations, effectively calculating the necessary material properties. Users can employ SwiftComp for virtual composite testing independently or complement existing structural analysis tools, thus incorporating high-fidelity composite modeling into their workflows seamlessly. In addition, SwiftComp is proficient in identifying the most suitable structural model for macroscopic analysis and boasts capabilities for dehomogenization, facilitating the calculation of pointwise stresses within the microstructure. It integrates effortlessly with well-established software like ABAQUS and ANSYS, which broadens its applications in engineering projects significantly. Ultimately, SwiftComp not only improves the efficiency of composite material modeling but also enhances the overall effectiveness of various engineering applications, making it an essential tool for engineers in the field. -
26
DC-AM DigitalClone for Additive Manufacturing
Sentient Science
Revolutionizing metal additive manufacturing with precision and efficiency.DigitalClone for Additive Manufacturing (DCAM) offers an extensive range of simulation and modeling tools specifically for metal additive manufacturing, facilitating a smooth process for design and analysis. Utilizing a multiscale and multi-physics analysis methodology, DC-AM effectively connects the process with the microstructure and fatigue characteristics of additively manufactured components, which allows for a thorough computational evaluation of their quality and performance. By providing unparalleled insights into build conditions and the attributes of the final products, DC-AM promotes the integration of additive manufacturing within safety-critical industries. This innovative approach not only reduces both time and costs associated with production but also streamlines the qualification processes for parts, ultimately enhancing efficiency in manufacturing practices. Additionally, the capabilities of DC-AM empower engineers to make informed decisions, thereby improving overall product reliability and safety standards. -
27
SOLIDWORKS Simulation
SolidWorks
Enhance designs, reduce costs, and innovate confidently today!Testing your designs in practical environments can greatly improve the quality of your products while also reducing the expenses related to prototyping and physical testing. The SOLIDWORKS® Simulation suite provides an intuitive array of structural analysis tools that utilize Finite Element Analysis (FEA) to predict how a product will perform under real-world conditions by virtually assessing CAD models. This extensive suite includes features for both linear and non-linear static and dynamic analyses, enabling comprehensive evaluations. With SOLIDWORKS Simulation Professional, you can enhance your designs by examining aspects like mechanical strength, longevity, topology, natural frequencies, as well as investigating heat distribution and the risk of buckling. It also supports sequential multi-physics simulations to improve design precision. In contrast, SOLIDWORKS Simulation Premium offers a more detailed examination of designs, focusing on nonlinear and dynamic responses, various loading scenarios, and composite materials. This advanced level includes three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, which together provide a robust assessment of your engineering initiatives. By utilizing these sophisticated tools, engineers are empowered to foster greater design confidence and push the boundaries of innovation in their projects. Ultimately, the integration of such simulations leads to a more efficient design process and superior end products. -
28
Energy2D
The Concord Consortium
Revolutionize simulations: Discover heat transfer and particle dynamics.Energy2D is an interactive multiphysics simulation tool rooted in computational physics, tailored to model the three main modes of heat transfer: conduction, convection, and radiation, while also incorporating particle dynamics. This software is designed to run smoothly on a variety of computer systems, streamlining the workflow by eliminating the need to switch between different preprocessors, solvers, and postprocessors typically required in computational fluid dynamics studies. Users can conduct "computational experiments" to investigate scientific theories or tackle engineering problems without the necessity for complex mathematical models. Furthermore, ongoing development aims to introduce additional energy transformation types and improve the software's compatibility with various fluid types. Although Energy2D is particularly strong in simulating conduction, its modeling of convection and radiation lacks complete accuracy, indicating that findings related to these processes should be interpreted as qualitative rather than quantitative. More than 40 scientific papers have cited Energy2D as a significant research tool, highlighting its integration into the academic landscape. As the program continues to advance, users can anticipate further enhancements in its features, which could lead to deeper understandings of intricate physical interactions, making it an even more indispensable resource for researchers and engineers alike. -
29
VSim
Tech-X
Unlock precision solutions for complex scientific challenges effortlessly.VSim represents an advanced Multiphysics Simulation Software specifically designed for engineers and scientists focused on finding precise solutions to intricate problems. By seamlessly integrating methodologies such as Finite-Difference Time-Domain (FDTD), Particle-in-Cell (PIC), and Charged Fluid (Finite Volume), it delivers dependable results across a range of applications, including plasma modeling. This software excels as a parallel tool, efficiently addressing large-scale challenges with fast simulations driven by algorithms fine-tuned for high-performance computing scenarios. Recognized by researchers in over 30 nations and employed by experts in diverse sectors like aerospace and semiconductor manufacturing, VSim provides outcomes with validated accuracy that professionals can trust. Created by a team of committed computational scientists, Tech-X's software boasts thousands of citations in academic literature, with VSim being a key resource in numerous prominent research institutions globally. Additionally, the software's ongoing development showcases its adaptability and dedication to fulfilling the increasing needs of contemporary scientific exploration. As it advances, VSim remains a vital asset for those pushing the boundaries of innovation in various scientific fields. -
30
Modelscape
MathWorks
Streamline financial model management for enhanced compliance and efficiency.The Modelscape solution simplifies the entire lifecycle management of financial models for financial institutions, improving documentation, transparency, and adherence to compliance standards. By implementing this solution throughout the model lifecycle, users benefit from consistent workflows, automated documentation generation, and efficient artifact linking. This methodology not only allows for the scaling of algorithms, models, and applications in both horizontal and vertical dimensions but also accommodates a wide range of enterprise infrastructures and programming languages such as Python, R, SAS, and MATLAB. The solution ensures comprehensive tracking of issues during the model lifecycle through complete model lineage and extensive reporting on both issues and usage. An executive dashboard presents valuable insights into model data, supports the execution of custom algorithms, and provides automated workflows, all while offering web-based access to a detailed and auditable inventory of models and their interconnected dependencies. Users are empowered to create, back-test, and effectively document their models and methodologies, enhancing their operational processes. This solution not only boosts the transparency, reproducibility, and reusability of financial models but also automatically produces essential documentation and reports that assist in ongoing compliance efforts. Consequently, it enables financial institutions to uphold exceptional standards in model governance and achieve greater operational efficiency, ultimately leading to better decision-making and risk management across the organization.