Innoslate
SPEC Innovations offers a premier model-based systems engineering solution aimed at helping your team accelerate time-to-market, lower expenses, and reduce risks, even when dealing with the most intricate systems. This solution is available in both cloud-based and on-premise formats, featuring an easy-to-use graphical interface that can be accessed via any current web browser.
Innoslate provides an extensive range of lifecycle capabilities, which include:
• Management of Requirements
• Document Control
• System Modeling
• Simulation of Discrete Events
• Monte Carlo Analysis
• Creation of DoDAF Models and Views
• Management of Databases
• Test Management equipped with comprehensive reports, status updates, outcomes, and additional features
• Real-Time Collaboration
Additionally, it encompasses numerous other functionalities to enhance workflow efficiency.
Learn more
Azore CFD
Azore is a software tool designed for computational fluid dynamics (CFD) that focuses on the analysis of fluid movement and thermal transfers. By utilizing CFD, engineers and scientists can numerically tackle a diverse array of problems related to fluid mechanics, thermal dynamics, and chemical interactions through computer simulations. Azore excels in modeling a variety of fluid dynamics scenarios, encompassing air, liquids, gases, and flows containing particles. Its applications are vast, including the modeling of liquid flow through piping systems and assessing water velocity profiles around submerged objects. Furthermore, Azore is adept at simulating the behavior of gases and air, allowing for the exploration of ambient air velocity patterns as they navigate around structures, as well as examining flow dynamics, heat transfer, and mechanical systems within enclosed spaces. This robust CFD software can effectively model nearly any incompressible fluid flow scenario, addressing challenges associated with conjugate heat transfer, species transport, and both steady-state and transient flow conditions. With such capabilities, Azore serves as an invaluable asset for professionals in various engineering and scientific fields requiring precise fluid dynamics simulations.
Learn more
Ansys Motor-CAD
Ansys MotorCAD serves as a specialized tool tailored for the design of electric machines. It enables rapid simulations of multiphysics throughout the complete torque-speed operating spectrum. With MotorCAD, engineers can assess various motor topologies within this full range, leading to designs that are fine-tuned for size, efficiency, and overall performance. The software comprises four modules—Emag, Therm Lab, and Mech—facilitating swift and iterative multiphysics calculations, thereby allowing users to transition from initial concepts to final designs more expeditiously. Moreover, MotorCAD empowers users to investigate a wider array of motor topologies and thoroughly analyze the effects of advanced losses during the preliminary phases of electromechanical design, aided by its efficient data input system. The latest update introduces robust new features aimed at optimizing design, enhancing multi-physics analysis, and improving system modeling for electric motors. Additionally, the speed of multiphysics simulations across the entire torque-speed spectrum ensures that engineers can make informed decisions quickly. In summary, MotorCAD significantly accelerates the design process while providing comprehensive analytical capabilities.
Learn more
ProcessModel
Experience a virtual test drive of your business operations through process simulation, which enables you to explore workflows and pinpoint possible obstacles. Advanced process mapping and simulation tools are crafted to assist organizations in enhancing processes, boosting efficiency, and minimizing waste. This technology allows for the simulation of real-life situations, offering valuable insights into the performance and potential bottlenecks within processes. Additionally, robust analytics and reporting features facilitate the ongoing tracking and assessment of process performance, ensuring continuous improvement and optimization.
Learn more