Azore CFD
Azore is a software tool designed for computational fluid dynamics (CFD) that focuses on the analysis of fluid movement and thermal transfers. By utilizing CFD, engineers and scientists can numerically tackle a diverse array of problems related to fluid mechanics, thermal dynamics, and chemical interactions through computer simulations. Azore excels in modeling a variety of fluid dynamics scenarios, encompassing air, liquids, gases, and flows containing particles. Its applications are vast, including the modeling of liquid flow through piping systems and assessing water velocity profiles around submerged objects. Furthermore, Azore is adept at simulating the behavior of gases and air, allowing for the exploration of ambient air velocity patterns as they navigate around structures, as well as examining flow dynamics, heat transfer, and mechanical systems within enclosed spaces. This robust CFD software can effectively model nearly any incompressible fluid flow scenario, addressing challenges associated with conjugate heat transfer, species transport, and both steady-state and transient flow conditions. With such capabilities, Azore serves as an invaluable asset for professionals in various engineering and scientific fields requiring precise fluid dynamics simulations.
Learn more
Jama Connect
Jama Connect® is an innovative platform for product development that establishes Living Requirements™. It weaves together disparate activities related to testing and risk management, ensuring comprehensive compliance, mitigating potential risks, enhancing processes, and maintaining adherence to regulations. Organizations involved in developing intricate products, systems, and software can now effectively outline, synchronize, and implement their requirements. This streamlined approach significantly decreases the time and resources needed to demonstrate compliance and minimizes the need for rework. By selecting a user-friendly, adaptable solution accompanied by supportive services focused on fostering adoption, companies can confidently pave the way to their success. The platform’s design emphasizes collaboration, ensuring that all stakeholders are aligned throughout the product development lifecycle.
Learn more
6SigmaET
6SigmaET is an advanced thermal modeling tool tailored for the electronics industry, leveraging state-of-the-art computational fluid dynamics (CFD) to create accurate representations of electronic devices. This simulation software provides exceptional levels of automation, intelligence, and precision, empowering users to meet their requirements and effectively address thermal design challenges. Since its inception in 2009, 6SigmaET has swiftly positioned itself as the premier thermal simulation solution within the electronics cooling sector. Its versatile platform allows users to analyze the thermal characteristics of a diverse array of electronic components, ranging from compact integrated circuits to large, high-performance servers. To better understand the benefits 6SigmaET can bring to your work, you might want to watch one of our engaging videos or explore our comprehensive case studies. Furthermore, users have the ability to import detailed CAD geometry and PCB designs into 6SigmaET, which significantly simplifies the modeling workflow and boosts overall productivity. This feature not only saves valuable time but also enhances the precision of thermal evaluations, making it an invaluable asset for engineers in the field. Ultimately, 6SigmaET stands out as a powerful ally in overcoming thermal challenges in electronic device design.
Learn more
Energy2D
Energy2D is an interactive multiphysics simulation tool rooted in computational physics, tailored to model the three main modes of heat transfer: conduction, convection, and radiation, while also incorporating particle dynamics. This software is designed to run smoothly on a variety of computer systems, streamlining the workflow by eliminating the need to switch between different preprocessors, solvers, and postprocessors typically required in computational fluid dynamics studies. Users can conduct "computational experiments" to investigate scientific theories or tackle engineering problems without the necessity for complex mathematical models. Furthermore, ongoing development aims to introduce additional energy transformation types and improve the software's compatibility with various fluid types. Although Energy2D is particularly strong in simulating conduction, its modeling of convection and radiation lacks complete accuracy, indicating that findings related to these processes should be interpreted as qualitative rather than quantitative. More than 40 scientific papers have cited Energy2D as a significant research tool, highlighting its integration into the academic landscape. As the program continues to advance, users can anticipate further enhancements in its features, which could lead to deeper understandings of intricate physical interactions, making it an even more indispensable resource for researchers and engineers alike.
Learn more