List of the Best Adams Alternatives in 2026
Explore the best alternatives to Adams available in 2026. Compare user ratings, reviews, pricing, and features of these alternatives. Top Business Software highlights the best options in the market that provide products comparable to Adams. Browse through the alternatives listed below to find the perfect fit for your requirements.
-
1
Ansys Motor-CAD
Ansys
Accelerate electric machine design with rapid multiphysics simulations.Ansys MotorCAD serves as a specialized tool tailored for the design of electric machines. It enables rapid simulations of multiphysics throughout the complete torque-speed operating spectrum. With MotorCAD, engineers can assess various motor topologies within this full range, leading to designs that are fine-tuned for size, efficiency, and overall performance. The software comprises four modules—Emag, Therm Lab, and Mech—facilitating swift and iterative multiphysics calculations, thereby allowing users to transition from initial concepts to final designs more expeditiously. Moreover, MotorCAD empowers users to investigate a wider array of motor topologies and thoroughly analyze the effects of advanced losses during the preliminary phases of electromechanical design, aided by its efficient data input system. The latest update introduces robust new features aimed at optimizing design, enhancing multi-physics analysis, and improving system modeling for electric motors. Additionally, the speed of multiphysics simulations across the entire torque-speed spectrum ensures that engineers can make informed decisions quickly. In summary, MotorCAD significantly accelerates the design process while providing comprehensive analytical capabilities. -
2
ReliaSoft
Hottinger Brüel & Kjær (HBK)
Empowering excellence through advanced reliability engineering solutions.ReliaSoft offers an extensive array of software solutions designed for reliability engineering, enabling a wide spectrum of modeling and analytical techniques. As a premier provider in the field, we specialize in delivering reliability solutions that enhance product testing, design, maintenance approaches, and optimization efforts. Our software encompasses numerous reliability and maintainability methodologies, such as life data analysis, accelerated lifetime testing, system modeling, and RAM analysis, among others. In addition, we facilitate reliability growth, FRACAS, FMEA, and RCM analyses, equipping you with the tools necessary to enhance both product reliability and process efficiency while streamlining maintenance planning. Ultimately, our solutions empower organizations to achieve superior performance and dependability in their offerings. -
3
Collimator
Collimator
Revolutionizing engineering with intuitive simulation for complex systems.Collimator serves as a sophisticated simulation and modeling platform tailored for hybrid dynamical systems. With Collimator, engineers can design and evaluate intricate, mission-critical systems efficiently and securely, all while enjoying an intuitive user experience. Our primary clientele consists of control system engineers hailing from the electrical, mechanical, and control industries. They leverage Collimator to enhance their productivity, boost performance, and foster improved collaboration among teams. The platform boasts a variety of built-in features, such as a user-friendly block diagram editor, customizable Python blocks for algorithm development, Jupyter notebooks to fine-tune their systems, cloud-based high-performance computing, and access controls based on user roles. With these tools, engineers are empowered to push the boundaries of innovation in their projects. -
4
DC-E DigitalClone for Engineering
Sentient Science Corporation
Revolutionize gearbox reliability with integrated analysis and optimization.DigitalClone® for Engineering stands out as the sole software that seamlessly combines various scales of analysis within a unified platform. Recognized globally as the premier tool for predicting gearbox reliability, DC-E excels not only in its modeling and analysis capabilities specific to gearboxes and gear/bearing interactions but also uniquely incorporates fatigue life modeling through advanced, physics-based methodologies (US Patent 10474772B2). By enabling the creation of a digital twin for gearboxes, DC-E encompasses every phase of an asset's lifecycle—from the optimization of design and manufacturing processes to the selection of suppliers, followed by thorough root cause analysis of failures and condition-based maintenance along with prognostics. This innovative computational environment significantly decreases both the time and costs associated with launching new designs and ensuring their long-term maintenance, ultimately enhancing operational efficiency. Moreover, it empowers engineers to make informed decisions at every stage, leading to improved performance and reliability. -
5
MapleSim
Waterloo Maple
Transforming engineering challenges into efficient, precise solutions.MapleSim is an advanced modeling platform that facilitates everything from the implementation of digital twins for virtual commissioning to the development of comprehensive system models for complex engineering projects, thereby achieving considerable reductions in both time and cost associated with development while effectively tackling real-world performance issues. By focusing on enhancing control code instead of making hardware changes, users can eliminate unwanted vibrations and identify the root causes of performance challenges through detailed simulation analysis. This robust tool enables the assessment of design performance before progressing to the creation of physical prototypes. Utilizing the latest methodologies, MapleSim significantly accelerates the process of model development and deepens the understanding of system dynamics, allowing for swift, high-fidelity simulations. As your simulation needs grow, the platform provides the flexibility to scale and interconnect your models seamlessly. Its versatile modeling language allows for the expansion of designs by integrating components from various domains within a virtual prototype, confidently addressing even the most complex machine performance issues. Furthermore, the iterative nature of the tool encourages continuous refinement and improvement, ultimately empowering engineers to pursue innovation with both efficiency and precision, ensuring their designs fulfill the high standards required for contemporary engineering challenges. In essence, MapleSim is a vital asset for any engineer aiming to navigate the complexities of modern design and simulation effectively. -
6
Abaqus
Dassault Systèmes
Streamline your engineering simulations for enhanced collaboration and efficiency.Engineering teams often rely on a variety of specialized simulation tools from different vendors to assess various design aspects, resulting in inefficiencies and increased costs associated with managing multiple software solutions. SIMULIA addresses this issue by offering a complete set of integrated analysis tools that allows users, regardless of their simulation expertise, to collaborate seamlessly and share simulation data and validated methodologies while preserving data integrity. The Abaqus Unified FEA product suite delivers powerful and versatile solutions for both fundamental and complex engineering problems, making it suitable for numerous industries. For instance, in the automotive sector, engineering teams can analyze vehicle load distributions, dynamic vibrations, multibody systems, crash scenarios, nonlinear static conditions, thermal effects, and acoustic-structural interactions, all within a singular model data framework and employing integrated solver technology. This cohesive integration not only simplifies the simulation process but also fosters enhanced collaboration across various engineering disciplines, ultimately leading to more effective project outcomes. Furthermore, by centralizing these tools, teams can reduce the time spent on data management and improve overall productivity. -
7
Simpack
Dassault Systèmes
Unlock precision in multibody system simulations for engineers.Simpack is a dynamic software solution for multibody system simulation (MBS) that enables engineers and analysts to effectively model and simulate the intricate non-linear motions found in various mechanical and mechatronic systems. This powerful tool allows users to develop and study virtual 3D models, enhancing their ability to predict and visualize dynamic behaviors, as well as the related forces and stresses. Although it is predominantly used in industries such as automotive, engine, hardware-in-the-loop/software-in-the-loop/model-in-the-loop testing, power transmission, railway, and wind energy, its versatility makes it applicable in all areas of mechanical engineering. A standout feature of Simpack is its capability to perform high-frequency transient analyses, including those within the acoustic range, thereby proving to be an essential resource for engineers. Initially created to tackle complex non-linear models that include flexible bodies and significant shock interactions, Simpack has continuously adapted to address the evolving challenges faced by modern engineers. With its ongoing development, this advanced simulation tool ensures that a diverse range of engineering problems can be resolved efficiently, thereby enhancing overall productivity and innovation in the field. -
8
Ansys Motion
Ansys
Revolutionize analysis with seamless, efficient multibody dynamics integration.Ansys Motion, now integrated within the Mechanical interface, is an advanced engineering solution that utilizes a high-performance multibody dynamics solver. This innovative tool enables swift and accurate analysis of both rigid and flexible bodies, thereby facilitating a comprehensive evaluation of physical events by considering the mechanical system as a whole. Within Ansys Motion, four synergistic solving techniques are employed: rigid body, flexible body, modal, and meshfree EasyFlex, each offering remarkable capabilities for analyzing diverse systems and mechanisms in any configuration. It adeptly manages large assemblies featuring millions of degrees of freedom while accounting for flexibility and contact interactions. The use of standard connections and joints promotes easy integration and loading of these systems. An added advantage is the ability to perform simulations in Ansys Motion using the same interface as traditional structural analysis, allowing a single model to be utilized across various applications, which leads to considerable time savings. Moreover, this cohesive integration not only simplifies workflows but also significantly boosts the overall efficiency of engineering endeavors, making it an essential tool for modern engineers. -
9
Altair Inspire
Altair
Accelerate innovation and collaboration for superior product development.When applied at the beginning of the product development journey, Inspire significantly boosts the speed and efficacy of creating, refining, and analyzing innovative and structurally sound components and assemblies through collaborative efforts. Its acclaimed interface for designing and modifying geometries can be learned in just a few hours, all while delivering reliable computational strength from Altair solvers. The swift and precise structural analysis capabilities of Altair® SimSolid®, confirmed by independent validation from NAFEMS, enable users to assess large assemblies and complex components with ease. Moreover, dynamic motion simulations, which encompass load extraction, utilize the powerful multi-body system analysis provided by Altair® MotionSolve®. For those aiming for structural efficiency, topology optimization through Altair® OptiStruct® paves the way for the generative design of functional, feasible, and manufacturable geometries. Inspire equips both simulation analysts and designers to explore what-if scenarios more quickly and conveniently, particularly at earlier phases of the project, enhancing teamwork across departments. This proactive incorporation of Inspire into the design workflow not only streamlines processes but also significantly encourages creativity and innovation in product development, ultimately leading to higher quality outcomes. -
10
HyperWorks
Altair Engineering
Streamlined workflows empower engineers to innovate and collaborate.HyperWorks provides user-friendly and efficient workflows that harness specialized knowledge, thereby boosting team efficiency. This capability facilitates the streamlined creation of modern, intricate, and interconnected products. With the enhanced HyperWorks experience, engineers can transition effortlessly between different domains, enabling them to produce reports without needing to exit the modeling environment. HyperWorks empowers users to design, investigate, and refine their creations. The platform can precisely simulate a wide range of elements, including structures, mechanisms, fluids, electrical systems, embedded software, and manufacturing techniques. Customized workflows specifically target various engineering tasks, enhancing processes such as fatigue analysis, computational fluid dynamics (CFD) modeling, concept design optimization, and design exploration. Each user interface is crafted to be intuitive and tailored to individual needs, ensuring a consistent and user-friendly experience throughout. Moreover, the versatility of HyperWorks enhances collaboration among team members, fostering innovation and accelerating project timelines. -
11
Simcenter Amesim
Siemens
Boost productivity and optimize mechatronic systems with ease.Simcenter Amesim stands out as a highly integrated and adaptable platform tailored for system simulation, enabling engineers to effectively simulate and enhance the performance of mechatronic systems. By utilizing this tool, overall productivity in system engineering can be significantly boosted, spanning from the early development phases to the ultimate stages of performance validation and controls calibration. The platform features a rich assortment of ready-to-use multiphysics libraries along with solutions tailored to specific industries. Its robust capabilities facilitate the rapid creation of models and comprehensive analysis. Additionally, Simcenter Amesim's open architecture seamlessly integrates with key software packages for computer-aided design (CAD), computer-aided engineering, and control systems, enhancing its utility in various engineering tasks. This versatility makes it an invaluable asset for engineers striving to achieve optimal system performance. -
12
MASTA
SMT
Revolutionize driveline design with innovative, efficient simulation tools.MASTA is an extensive suite of CAE tools that facilitates the design, simulation, and analysis of driveline systems, covering everything from conceptualization to final production. It provides a platform for the swift and accurate development of transmission systems, whether initiating a new design or refining an existing one. Users can gain valuable insights into the performance of mechanical components over their lifespan, especially when subjected to various customer duty cycles. This software is instrumental in identifying potential failure modes early in the product development process, allowing for timely adjustments to designs. Key performance indicators can be predicted with high efficiency during the design phase, enabling thorough assessments of changes to transmission configurations, component selections, materials, and manufacturing methods within a virtual setting. Full system simulations can be conducted for any type of transmission or driveline arrangement, and incorporating manufacturing simulations in the design phase significantly reduces both time and costs associated with development. The innovative framework of MASTA, which is entirely built in C#, improves its stability and ensures compatibility with both current and future operating systems. Furthermore, MASTA not only meets the current demands of driveline design but also positions itself as a forward-thinking solution for future advancements in this field. Overall, MASTA is a powerful tool that adapts to the dynamic requirements of driveline design and analysis, making it an essential asset for engineers and designers alike. -
13
ETAP Software
ETAP
Empowering engineers with comprehensive solutions for power systems.ETAP® is a leading provider of robust analytical engineering software, focusing on the analysis, simulation, monitoring, control, optimization, and automation of electrical power systems. The software developed by ETAP stands out as the most thorough and all-encompassing integrated solution for power system enterprises, catering to a wide range of engineering needs. With its advanced capabilities, ETAP® empowers engineers to efficiently manage and enhance electrical power systems. -
14
Solid Edge
Siemens
Empower your product development with innovative, user-friendly solutions.Solid Edge comprises a suite of cost-effective software tools that are user-friendly and straightforward to manage. It enhances every facet of product development, encompassing mechanical and electrical design, simulation, manufacturing processes, technical documentation, data management, and collaboration through the cloud. Grounded in Siemens' cutting-edge technologies, Solid Edge provides an extensive and imaginative methodology for product development tailored to mainstream industries. This comprehensive toolkit is designed to streamline workflows and improve efficiency across various engineering disciplines. -
15
SOLIDWORKS Simulation
SolidWorks
Enhance designs, reduce costs, and innovate confidently today!Testing your designs in practical environments can greatly improve the quality of your products while also reducing the expenses related to prototyping and physical testing. The SOLIDWORKS® Simulation suite provides an intuitive array of structural analysis tools that utilize Finite Element Analysis (FEA) to predict how a product will perform under real-world conditions by virtually assessing CAD models. This extensive suite includes features for both linear and non-linear static and dynamic analyses, enabling comprehensive evaluations. With SOLIDWORKS Simulation Professional, you can enhance your designs by examining aspects like mechanical strength, longevity, topology, natural frequencies, as well as investigating heat distribution and the risk of buckling. It also supports sequential multi-physics simulations to improve design precision. In contrast, SOLIDWORKS Simulation Premium offers a more detailed examination of designs, focusing on nonlinear and dynamic responses, various loading scenarios, and composite materials. This advanced level includes three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, which together provide a robust assessment of your engineering initiatives. By utilizing these sophisticated tools, engineers are empowered to foster greater design confidence and push the boundaries of innovation in their projects. Ultimately, the integration of such simulations leads to a more efficient design process and superior end products. -
16
Siemens NX
Siemens
Accelerate innovation and streamline design with seamless integration.Siemens NX software presents a versatile and powerful integrated platform that significantly boosts the speed and efficiency of product development. This cutting-edge solution introduces sophisticated design, simulation, and manufacturing features, enabling businesses to fully leverage the digital twin concept. NX encompasses every stage of the product lifecycle, from the initial design concept through engineering to manufacturing, offering a unified toolset that seamlessly integrates multiple disciplines, preserves data integrity, and upholds design intent, thus streamlining the entire workflow. A particularly impactful feature within NX is the generative design process, which allows engineers to rapidly develop new products while conforming to specific design criteria. This cyclical approach leads to quick outcomes, empowering engineers to iterate on designs by modifying constraints until they find the ideal solutions that meet all project specifications. Consequently, this adaptability in design processes not only fosters innovation but also shortens the time required to bring new products to market. By continuously refining and optimizing the design process, Siemens NX positions organizations to stay competitive in a fast-evolving industry. -
17
Rollup
Rollup
Revolutionize engineering collaboration with seamless low-code solutions.Rollup is a groundbreaking low-code collaboration platform designed specifically for engineering teams that are engaged in the development of sophisticated hardware solutions. It offers an extensive array of modules within a cohesive, browser-based interface that supports every stage of your engineering projects. Users can easily shift their system models from the conceptual phase to final production, while consistently incorporating engineering data and parameters throughout the journey. The platform enhances the mechanical design workflow, facilitating design reviews and real-time feedback that are accurately aligned with the geometry. With Rollup, the efficient creation and management of requirements fosters improved collaboration, faster approvals, and immediate verification tied to reliable data sources. This ensures comprehensive coverage of components in both mechanical and electrical fields, effectively preventing data duplication issues. Rollup distinguishes itself as the most intuitive option for teams pursuing interdisciplinary collaboration in engineering initiatives. Furthermore, it features integrated project management tools that support effective planning, execution, and monitoring of all tasks involved, ultimately contributing to a more streamlined engineering process. Consequently, teams utilizing Rollup can achieve higher productivity and more successful project outcomes. -
18
COMSOL Multiphysics
Comsol Group
Empower innovation with advanced multiphysics modeling capabilities.Leverage the power of COMSOL's multiphysics software to accurately model real-world designs, devices, and processes. This adaptable simulation platform is built on advanced numerical methods and offers extensive features for both fully coupled multiphysics and individual physics modeling. Users can follow a comprehensive modeling workflow that encompasses everything from creating geometries to conducting postprocessing analyses. The software includes user-friendly tools that facilitate the development and implementation of simulation applications. COMSOL Multiphysics® guarantees a uniform user interface and experience across a wide range of engineering disciplines and physical phenomena. Moreover, specific functionalities can be accessed through add-on modules tailored to areas such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can also choose from various LiveLink™ products to ensure seamless integration with CAD systems and other external software. In addition, applications can be deployed via COMSOL Compiler™ and COMSOL Server™, allowing the creation of models and simulation applications driven by physics within this robust software ecosystem. The extensive capabilities of COMSOL empower engineers to push the boundaries of innovation while enhancing their projects effectively, ultimately leading to improved efficiency and creativity in design and analysis processes. -
19
SIMULIA
Dassault Systèmes
Transforming insights into innovation with advanced simulation solutions.Through the 3DEXPERIENCE® platform, SIMULIA offers sophisticated simulation tools that enable users to gain deeper insights into and evaluate their surroundings. The applications provided by SIMULIA facilitate the evaluation of material and product performance, reliability, and safety, before any physical prototypes are created. These cutting-edge tools can simulate a wide range of scenarios, including structures, fluids, multibody interactions, and electromagnetics, while ensuring seamless integration with product data, even for intricate assemblies. The technology for modeling, simulation, and visualization is thoroughly embedded within the 3DEXPERIENCE platform, encompassing features for process capture, publication, and reuse. By connecting simulation data, results, and intellectual property to the platform, users can enhance their existing investment in simulation technologies, converting these elements into invaluable assets that stimulate innovation for all participants. This integration not only boosts efficiency in workflows but also promotes collaborative progress across various teams and initiatives, ultimately leading to more innovative solutions. As a result, organizations can harness the full potential of their resources while driving continuous improvement in their projects. -
20
Ansys Maxwell
Ansys
Unlock precision design and efficiency in electromechanical systems.Ansys Maxwell is an electromagnetic field solver specifically designed for use in electric machines, transformers, wireless charging solutions, permanent magnet latches, actuators, and a range of electromechanical devices. It proficiently analyzes static, frequency-domain, and time-varying electric and magnetic fields. The software is equipped with specialized design tools tailored for electric machines and power converters. With Maxwell, users are able to thoroughly evaluate the nonlinear and transient characteristics of electromechanical components and their effects on drive circuits and control system frameworks. By leveraging Maxwell’s advanced electromagnetic field solvers in conjunction with circuit and systems simulation technologies, users can acquire valuable insights into the behavior of electromechanical systems before they build a physical prototype. Furthermore, Maxwell is esteemed for its ability to provide dependable simulations of low-frequency electromagnetic fields prevalent in industrial settings, which is crucial for achieving superior design and functionality in practical applications. This powerful capability establishes Maxwell as an indispensable resource for engineers aiming to enhance their designs and elevate overall system efficiency. As such, it plays a pivotal role in the innovation and optimization of electromechanical engineering projects. -
21
Inventor Nastran
Autodesk
Transform your design process with advanced simulation capabilities.Inventor® Nastran® functions as a finite element analysis (FEA) solution embedded within CAD applications, allowing engineers and analysts to conduct a wide variety of studies with different materials. It offers extensive simulation capabilities, covering both linear and nonlinear stress evaluations, dynamic analyses, and heat transfer calculations. This tool is part of the Product Design & Manufacturing Collection, which comprises an array of robust tools aimed at optimizing workflows in Inventor. Alongside its sophisticated simulation functionalities, the collection includes 5-axis CAM systems, nesting solutions, and grants access to software such as AutoCAD and Fusion 360, fostering a comprehensive approach to the product design and manufacturing landscape. By leveraging Inventor Nastran, professionals can not only enhance their analytical processes but also achieve significantly better design results that meet industry standards. Ultimately, this integration empowers teams to innovate and improve efficiency within their projects. -
22
CR-8000 Design Force
ZUKEN
Revolutionize electrical design with seamless collaboration and insights.Design Force represents a groundbreaking advancement in the realm of electrical design, enabling users to transcend the limitations typically associated with traditional electrical design processes. As the complexity of product design continues to escalate, incorporating technologies that often elude the capabilities of conventional ECAD tools, Design Force equips design teams with the ability to tap into system-level design insights right from the initial planning and conceptual stages. This early access facilitates the simultaneous layout of each product board, all while maintaining a comprehensive view of the entire system. Utilizing the latest in industry-standard hardware and software, Design Force allows users to operate within a native 3D environment, thereby optimizing performance through the use of cutting-edge 64-bit, multithreading, and multicore processors. In addition to its robust design capabilities, Design Force is designed to be compatible with various client-server models, providing flexibility for users to work seamlessly from their corporate cloud if desired. Furthermore, this innovative tool enhances collaboration among team members, ensuring a more integrated approach to product development. -
23
SimuPACT
SimGenics
SimuPACT is an Advanced Simulation Software Suite used to develop Operator Training SimulatorsSimuPACT represents a state-of-the-art simulation software platform tailored for the rapid creation of high-fidelity and comprehensive simulators for power and process plants. It boasts advanced graphical tools and a solid integrated architecture that supports engineering analysis, operator training, and control system validation seamlessly within a single platform, all without incurring additional costs. By leveraging cutting-edge advancements in software technology and engineering practices, SimuPACT achieves remarkable accuracy while accelerating the simulator development process. Users benefit from customizable modeling tools, various solvers, and an extensive selection of libraries that encompass electrical networks, multi-phase flows, control networks, sensors, actuators, mechanical systems, and material handling. Furthermore, the platform guarantees smooth integration with distributed control system (DCS) emulation as well as third-party systems utilizing standard protocols. Additionally, SimuPACT features a flexible instructor station that empowers users to configure simulations, initiate malfunctions, monitor scenarios, and assess trainee performance, significantly enhancing the overall training experience. As a result, SimuPACT stands out as an indispensable resource for professionals who seek to advance their engineering and training capabilities in the industry. Its innovative approach ensures that users can meet the demands of modern power and process plant operations effectively. -
24
FLOW-3D
Flow Science
Transform product development with precise, user-friendly CFD solutions.Accelerate your product development and streamline the launch process with FLOW-3D, an exceptionally accurate CFD software skilled in solving transient and free-surface issues. Along with our state-of-the-art postprocessor, FlowSight, FLOW-3D provides a full multiphysics suite. This adaptable CFD simulation platform enables engineers to investigate the intricate interactions of liquids and gases across a wide range of industrial fields and physical phenomena. With a dedicated focus on multi-phase and free surface applications, FLOW-3D serves multiple industries, such as microfluidics, biomedical technology, civil water infrastructure, aerospace, consumer goods, additive manufacturing, inkjet printing, laser welding, automotive, offshore industries, and the energy sector. As a highly effective multiphysics tool, FLOW-3D merges functionality with user-friendliness and advanced capabilities to assist engineers in reaching their modeling objectives, thereby fostering innovation and enhancing efficiency in their projects. By utilizing FLOW-3D, organizations can tackle intricate challenges and guarantee that their designs are refined for success in competitive environments, paving the way for future advancements and breakthroughs in technology. -
25
Capital
Siemens
Streamline E/E system development with comprehensive, innovative solutions.The Capital Electrical and Electronics (E/E) systems development software suite offers comprehensive features for designing E/E system and software architecture, managing communication networks, and developing embedded software. This suite streamlines the creation, engineering, and validation of complex products, particularly leveraging a digital twin framework for enhanced efficiency. Given the increasing intricacy of modern E/E systems, a strong integration of electrical, electronic, and software elements is crucial. By adopting Capital, a complete E/E systems development solution, organizations can significantly advance their innovative product development efforts. The use of an inclusive model-based digital twin greatly amplifies automation, promoting seamless collaboration among different engineering fields. This solution supports connectivity within an open ecosystem, providing tools that are both intuitive and customizable. Furthermore, it optimizes E/E system architectures by concentrating on vital performance indicators like cost, weight, and bandwidth, while simultaneously fostering improved teamwork among diverse groups. Ultimately, this suite not only addresses current challenges but also prepares teams for future advancements in E/E systems. -
26
Luminary Cloud
Luminary Cloud
Transform engineering design with rapid insights and collaboration.Luminary Cloud stands at the forefront of computer-aided engineering as the pioneering SaaS platform that offers engineers the ability to quickly gain insights, allowing them to perform simulations, analyses, and iterations that were once beyond reach. Experience the astounding capability to conduct simulations in just minutes, utilizing some of the most powerful cloud-based GPUs available today. Your unprocessed simulation data can be securely stored, accessed, and evaluated, yielding valuable insights that significantly enhance the optimization of engineering design. By streamlining experimental processes, you can elevate the quality of product design while effectively reducing defects. This platform remarkably shortens the time to market by boosting engineering efficiency and cutting down costs related to hardware, prototyping, and physical testing. Equip your team to realize their most innovative designs through faster insights and outcomes, all made possible by an exceptionally user-friendly simulation platform. With the ability to execute rapid simulations at any scale, collaborate globally via project sharing, and immediately start analyzing results, your engineering workflow will undergo a transformative improvement. The future of engineering design has arrived, simplifying the journey to bring groundbreaking products to market. This advancement not only enhances creativity but also fosters a collaborative environment that empowers engineers to push the boundaries of what is possible. -
27
SimScale
SimScale
Transforming engineering with powerful, cloud-based simulation tools.SimScale is a cloud-based application that significantly contributes to simulation software across various sectors. This platform offers capabilities in Computational Fluid Dynamics, Finite Element Analysis (FEA), and Thermal Simulation. Additionally, it features 3D simulations, ongoing modeling, as well as motion and dynamic modeling capabilities. With its extensive range of tools, SimScale enhances the efficiency and accuracy of engineering simulations. -
28
Autodesk Fusion 360
Autodesk
Unify design and engineering for innovative, efficient solutions.Fusion 360 effectively merges design, engineering, electronics, and manufacturing into a unified software platform. This powerful environment provides an all-encompassing suite that fuses CAD, CAM, CAE, and PCB functionalities into one comprehensive development toolkit. Users are also equipped with premium features such as EAGLE Premium, HSMWorks, Team Participant, and a variety of cloud-based services, including generative design and cloud simulation, enhancing their productivity. With a vast array of modeling tools, engineers are able to design products efficiently while ensuring their form, fit, and function through various analytical methods. Sketch creation and modification is streamlined through the use of constraints, dimensions, and advanced sketching capabilities. Additionally, users can effortlessly edit or rectify imported geometry from diverse file formats, which significantly optimizes their workflow. Design changes can be executed without worrying about time-dependent features, allowing for greater flexibility. The software also facilitates the creation of complex parametric surfaces for tasks ranging from geometry repair to intricate design work, while adaptive history features like extrude, revolve, loft, and sweep respond dynamically to any design modifications. This adaptability and robustness make Fusion 360 an indispensable asset in contemporary engineering practices, ultimately empowering users to innovate and enhance their projects with greater ease. -
29
Twinn Witness
Haskoning
Unlock insights and enhance operations with risk-free simulations.Twinn Witness, developed by Royal HaskoningDHV, serves as a sophisticated simulation tool that enables organizations to create dynamic virtual models of both their current and future operations and facilities. By engaging with a range of hypothetical scenarios, users can uncover critical business insights and evaluate their choices without incurring any risks. The software provides both two-dimensional and immersive three-dimensional simulation models, which significantly improve communication and deepen understanding of processes and data relationships. Designed for ease of use and adaptability, it offers thorough insights into capital expenditures, continuous improvements, and operational advancements before financial commitments are made. As a result, organizations can achieve better performance, reduced costs, and establish compelling business cases that support sustainable growth while maximizing return on investment. Furthermore, Twinn Witness equips organizations to make strategic decisions that are in alignment with their long-term objectives, thereby reinforcing their position in a competitive market. This powerful tool ultimately fosters a culture of innovation and proactive planning within the organization. -
30
VPS-MICRO
VEXTEC Corporation
Revolutionizing material lifespan analysis with advanced computational insights.VPS-MICRO assesses the lifespan of manufactured components by analyzing the features of their materials. This cutting-edge software is grounded in three key principles. Firstly, the longevity of a material is affected not only by the stress it endures but also by its reaction to that stress. Secondly, the materials utilized in the construction of complex components often display irregular properties. Lastly, using computational methods proves to be more economical and faster than traditional approaches, such as physical testing or prototyping. By leveraging these principles, VEXTEC’s VPS-MICRO® functions as an advanced computational tool that accurately accounts for a material’s reaction to applied stress, its natural variability, different damage mechanisms, geometric considerations, and the conditions under which it operates over time. As a result, it generates a three-dimensional, time-dependent simulation that authentically reflects the real-world physics associated with the initiation, development, and causes of material degradation, providing essential insights for engineers and designers. This feature not only deepens understanding but also contributes to enhancing the design and dependability of future products, ultimately leading to innovations in material science and engineering practices.