What is Ansys Lumerical FDTD?

Ansys Lumerical FDTD is recognized as the leading solution for simulating devices, processes, and materials in the nanophotonic field. This all-encompassing design environment features scripting options, advanced post-processing tools, and optimization capabilities. The refined application of the FDTD method within this software guarantees exceptional solver performance for various applications. Users benefit from an integrated design framework that allows them to focus on innovative ideas while the software manages the intricate details. The platform’s flexibility and customization options cater to specific project requirements, making it highly adaptable. Ansys Lumerical FDTD is particularly adept at modeling nanophotonic devices, which encourages creativity and design exploration. With its well-designed implementation of the FDTD method, it promises reliable, powerful, and scalable results across numerous applications, helping users to achieve outstanding outcomes in their endeavors. The extensive features and robust performance solidify its status as an essential asset for both engineers and researchers in the field. Ultimately, this software empowers professionals to push the boundaries of nanophotonics, fostering advancements that could shape future technologies.

Integrations

No integrations listed.

Screenshots and Video

Ansys Lumerical FDTD Screenshot 1

Company Facts

Company Name:
Ansys
Date Founded:
1970
Company Location:
United States
Company Website:
www.ansys.com/products/photonics/fdtd

Product Details

Deployment
SaaS
Training Options
Documentation Hub
Online Training
Webinars
Support
Standard Support
Web-Based Support

Product Details

Target Company Sizes
Individual
1-10
11-50
51-200
201-500
501-1000
1001-5000
5001-10000
10001+
Target Organization Types
Mid Size Business
Small Business
Enterprise
Freelance
Nonprofit
Government
Startup
Supported Languages
English

Ansys Lumerical FDTD Categories and Features

Simulation Software

1D Simulation
3D Modeling
3D Simulation
Agent-Based Modeling
Continuous Modeling
Design Analysis
Direct Manipulation
Discrete Event Modeling
Dynamic Modeling
Graphical Modeling
Industry Specific Database
Monte Carlo Simulation
Motion Modeling
Presentation Tools
Stochastic Modeling
Turbulence Modeling