List of the Best PathWave RFIC Design Alternatives in 2025
Explore the best alternatives to PathWave RFIC Design available in 2025. Compare user ratings, reviews, pricing, and features of these alternatives. Top Business Software highlights the best options in the market that provide products comparable to PathWave RFIC Design. Browse through the alternatives listed below to find the perfect fit for your requirements.
-
1
RFPro Circuit
Keysight
Transform your RFIC designs with cutting-edge simulation precision.Elevate your capabilities in RF simulation to proficiently design, assess, and validate radio frequency integrated circuits (RFICs) beyond conventional techniques. Achieve reliable results by utilizing steady-state and nonlinear solvers specifically designed for both the design and verification phases. Speed up the validation process of complex RFICs with wireless standard libraries that prioritize efficiency. Ensure accurate modeling of silicon chip components to attain the highest precision possible. Improve your designs with load-pull analysis and parameter sweeps to achieve superior performance outcomes. Execute RF simulations within the Cadence Virtuoso and Synopsys Custom Compiler environments to optimize your workflow. Incorporate Monte Carlo simulations and yield analysis into your strategy to enhance performance metrics further. At the outset of the design process, assess error vector magnitude (EVM) to align with current communication standards, ensuring your designs remain compliant. Capitalize on innovative foundry technology right from the beginning of your project. It becomes imperative to monitor critical specifications like EVM through RF simulation during the initial stages of RFIC design. These simulations factor in the implications of layout parasitics, complex modulated signals, and digital control circuitry. By utilizing Keysight RFPro Circuit, you gain the capability for thorough simulation across both frequency and time domains, significantly improving the overall design process and accuracy. This comprehensive strategy guarantees that your RFICs not only meet but surpass industry benchmarks, paving the way for future advancements in technology. Ultimately, embracing such an approach will position your designs at the forefront of innovation in the RFIC sector. -
2
OrCAD X
Cadence Design Systems
Elevate your PCB design with seamless automation and collaboration.OrCAD® X represents a comprehensive platform for PCB design that enhances user experience, boosts performance, and streamlines automation. This software suite encompasses various applications such as schematic design, PCB layout, simulation, and data management. Among its offerings, OrCAD X Capture stands out as a widely used tool for creating and documenting electrical circuits. Complementing this is PSpice®, an integrated virtual SPICE simulation engine within Capture, which empowers users to prototype and validate their designs through top-tier native analog, mixed signal, and advanced analysis capabilities. Additionally, OrCAD X Presto and OrCAD X PCB editor facilitate seamless collaboration between ECAD and MCAD teams, enabling designers to produce superior PCBs more efficiently. OrCAD X Presto features a user-friendly interface tailored for novice designers as well as electrical engineers and PCB designers who prioritize rapid PCB development, making it an essential tool in today's fast-paced design environment. The combined functionalities of these applications ensure that designers can meet the evolving demands of the industry effectively. -
3
Sigrity X PowerSI
Cadence Design Systems
Optimize designs, enhance reliability, and conquer electrical challenges.Cadence®'s Sigrity X PowerSI® technology addresses the escalating challenges associated with switching noise, signal interference, and maintaining target voltage levels. It offers rapid, precise, and comprehensive electrical analyses for complete IC packages and PCBs. This technology can be employed to formulate power and signal integrity guidelines either prior to layout or after, facilitating performance verification and design enhancement without the need for a prototype. Sigrity X's advanced electromagnetic (EM) solver capabilities enable a variety of analyses, such as pinpointing coupling issues with traces and vias, assessing power and ground fluctuations due to simultaneous output switching, and designing areas that meet or exceed voltage specifications. Furthermore, PowerSI technology helps in extracting frequency-dependent parameter models for network configurations while providing visualization of intricate spatial relationships, ensuring that designers can optimize their circuits effectively. This powerful toolset ultimately streamlines the design process and enhances overall product reliability. -
4
Ansys Exalto
Ansys
Unlock precise RLCk extraction for superior IC design efficiency.Ansys Exalto is a specialized software tool for post-LVS RLCk extraction that aids integrated circuit (IC) designers in accurately detecting unknown crosstalk across different design hierarchy blocks by extracting lumped-element parasitics and establishing a precise model for electrical, magnetic, and substrate interactions. This tool is designed to work seamlessly with most LVS tools and can significantly improve the RC extraction capabilities of your chosen software. By leveraging Ansys Exalto’s post-LVS RLCk extraction features, IC designers can proficiently predict electromagnetic and substrate coupling effects, allowing for the signoff of circuits that were once considered "too large to analyze." The models produced by the software can be back-annotated to the schematic or netlist, ensuring compatibility with all circuit simulators. As the demand for RF and high-speed circuits grows in modern silicon systems, accurately modeling electromagnetic coupling has become increasingly vital, as it plays a crucial role in the success of silicon designs. Therefore, Ansys Exalto proves to be an indispensable tool for designers striving to tackle the intricate challenges of contemporary circuit design with utmost accuracy and efficiency. Furthermore, its capabilities not only streamline the design process but also enhance the reliability of the final product, making it a valuable resource for any IC design team. -
5
Sigrity X Advanced SI
Cadence Design Systems
Elevate your designs with cutting-edge signal integrity solutions.Sigrity X Advanced SI Technology provides sophisticated signal integrity assessment for printed circuit boards and integrated circuit packaging, spanning frequencies from DC to 56GHz. Its capabilities include automated die-to-die signal integrity analysis, topology exploration, and the simulation of high-speed interfaces. Additionally, the technology accommodates IBIS-AMI and allows for customized compliance kits, ensuring designs adhere to strict regulatory standards. This comprehensive approach enhances the reliability and performance of electronic designs in an increasingly high-speed environment. -
6
Sigrity X OptimizePI
Cadence Design Systems
Maximize performance and cut costs with optimal decoupling solutions.Cadence® introduces its Sigrity X OptimizationPI™ technology, which conducts a comprehensive AC frequency analysis of circuit boards and IC packages, enabling performance enhancement and potential savings of 15% to 50% on decoupling capacitor expenditures. This technology caters to both pre-layout and post-layout investigations, efficiently identifying the most economical decoupling capacitor options. The foundation of Sigrity X OptimizePI lies in the established Cadence hybrid magnetic circuit analysis methodology, fused with the innovative Sigrity Optimization engine, allowing users to swiftly determine optimal placement and decap site selection. By leveraging this advanced tool, engineers can enhance design efficiency while simultaneously reducing costs. -
7
Analog FastSPICE Platform
Siemens
Experience unmatched speed and accuracy in circuit verification!The AFS Platform, certified by Foundry, delivers nm SPICE accuracy at a speed that is five times faster than traditional SPICE and over twice as rapid as parallel SPICE simulators. It stands out as the fastest nm circuit verification platform available for analog, RF, mixed-signal, and custom digital designs, now further improved by the cutting-edge eXTreme technology. With the latest AFS eXTreme, users can handle extensive post-layout circuits with a capacity surpassing 100 million elements while achieving speeds that are three times quicker than conventional post-layout simulators. The platform seamlessly integrates with all major digital solvers, providing exceptional usability that enhances the reuse of verification infrastructure. Notably, it incorporates advanced verification and debugging capabilities that significantly improve verification coverage, elevate design quality, and shorten the time-to-market for new products. Offering SPICE-accurate, high-sigma verification, it performs a remarkable 1,000 times faster than traditional brute-force simulation techniques. Furthermore, the user-friendly AFS eXTreme technology is included at no additional cost, making it an essential asset for engineers who prioritize efficiency and precision in their design workflows. Its capability to simplify complex processes not only reinforces its reputation as a premier solution in circuit verification but also empowers teams to innovate more effectively. -
8
SiLogy
SiLogy
Transform chip development: speed, efficiency, collaboration, innovation unleashed!Our cutting-edge web platform dramatically accelerates the efficiency of chip developers and verification engineers, enabling them to design and troubleshoot at speeds tenfold compared to previous methods. Verilator allows users to effortlessly launch and run thousands of tests at once with a single click. It also simplifies the sharing of test results and waveforms within teams, supports tagging colleagues on specific signals, and provides comprehensive tracking for test and regression failures. By leveraging Verilator to generate Dockerized simulation binaries, we adeptly distribute test runs across our computing cluster, after which we can compile the results and log files, with the ability to rerun any tests that did not yield waveforms. The use of Docker guarantees that test executions remain consistent and reproducible. SiLogy ultimately enhances the productivity of chip developers by significantly reducing the time spent on design and debugging tasks. Before SiLogy was introduced, the primary approach for identifying issues in failing tests involved the tedious process of manually extracting lines from log files, analyzing waveforms on individual computers, or rerunning simulations that could take an excessive amount of time, often lasting several days. Now, our platform empowers engineers to devote more time to innovation instead of being hindered by tedious debugging procedures, resulting in a more dynamic and creative work environment. This shift not only improves individual productivity but also fosters collaboration among teams, leading to more efficient project outcomes. -
9
L-Edit Photonics
Siemens
Streamlined photonic design: flexibility meets user-friendly innovation.Develop your photonic integrated circuit using a layout-centric workflow that provides designers the flexibility to choose between a drag-and-drop interface and a script-based method. Both options are supported by an extensive custom IC design layout editor, which also oversees the physical verification and tape-out phases. L-Edit Photonics enables swift creation of photonic designs with its user-friendly drag-and-drop feature, which eliminates the necessity for programming. Once the design is complete, a netlist can be generated to facilitate photonic simulations. The integration of the PIC design within the IC layout editor allows users to create layouts without any coding, promoting a layout-focused approach that operates independently of a schematic. For those inclined towards a schematic flow, S-Edit serves as an optional resource. Furthermore, a simulation netlist can be derived for use in a photonic simulator, with photonic simulations being easily integrated through collaborations with various providers. Additionally, numerous foundries supply photonic PDKs to bolster design capabilities. This robust workflow not only simplifies the photonic design process but also accommodates a wide range of designer preferences and methodologies, ensuring that both novice and experienced designers can effectively create and simulate their circuits. -
10
Ansys Maxwell
Ansys
Unlock precision design and efficiency in electromechanical systems.Ansys Maxwell is an electromagnetic field solver specifically designed for use in electric machines, transformers, wireless charging solutions, permanent magnet latches, actuators, and a range of electromechanical devices. It proficiently analyzes static, frequency-domain, and time-varying electric and magnetic fields. The software is equipped with specialized design tools tailored for electric machines and power converters. With Maxwell, users are able to thoroughly evaluate the nonlinear and transient characteristics of electromechanical components and their effects on drive circuits and control system frameworks. By leveraging Maxwell’s advanced electromagnetic field solvers in conjunction with circuit and systems simulation technologies, users can acquire valuable insights into the behavior of electromechanical systems before they build a physical prototype. Furthermore, Maxwell is esteemed for its ability to provide dependable simulations of low-frequency electromagnetic fields prevalent in industrial settings, which is crucial for achieving superior design and functionality in practical applications. This powerful capability establishes Maxwell as an indispensable resource for engineers aiming to enhance their designs and elevate overall system efficiency. As such, it plays a pivotal role in the innovation and optimization of electromechanical engineering projects. -
11
PDN Analyzer
Altium
Optimize your PCB power delivery with precise insights.The PDN Analyzer tool from Altium seamlessly integrates with Altium Designer, enabling users to efficiently identify and resolve problems like inadequate or excessive copper and unpredictable voltage drops. Additionally, it can pinpoint issues such as low voltage at key power points, copper islands, or peninsulas that may affect the performance of your PCB's power system. The PDN encompasses the complete power distribution network for active circuits on printed circuit boards, including all connections between the voltage regulator module, the metallization pads, and the integrated device dies responsible for power supply and return. To ensure that the power delivery network adheres to the IC supply voltage requirements, every segment must be scrutinized. An accurate validation of your power budget requires careful consideration of the minimum and maximum device specifications, potential worst-case voltage drops, cumulative return-path currents, and additional factors. With PDN Analyzer, you receive precise insights into the locations of these issues, facilitating a more effective design process. By addressing these concerns, designers can enhance the reliability and efficiency of their power delivery systems. -
12
Siemens Solido
Siemens
Accelerate your designs with AI-driven, comprehensive validation solutions.Thousands of designers at top semiconductor companies worldwide rely on Solido's variation-aware design solutions, which encompass IP validation, library characterization, and advanced simulation technologies powered by state-of-the-art AI. This comprehensive suite includes AI-optimized SPICE, Fast SPICE, and mixed-signal simulators that enable clients to accelerate essential design and verification tasks for sophisticated analog, mixed-signal, and custom IC designs significantly. It provides the fastest and most comprehensive integrated IP validation solution in the industry, guaranteeing thorough IP quality assurance from the initial design stage through to tape-out, while addressing all design aspects and incorporating IP updates efficiently. Additionally, this all-encompassing AI-driven design environment supports both nominal and variation-aware verification for custom IC circuits, ensuring complete design coverage with a dramatically reduced number of simulations, all while achieving accuracy on par with traditional brute-force techniques. In addition, it presents swift and accurate library characterization tools that utilize machine learning to boost performance and reliability. By streamlining these processes, designers can focus more on innovation and less on time-consuming verification tasks. -
13
Ansys Icepak
Ansys
Optimize electronic cooling with powerful CFD thermal management.Ansys Icepak is a specialized computational fluid dynamics (CFD) tool tailored for the thermal management of electronic systems. It accurately predicts airflow, temperature gradients, and heat transfer in integrated circuit (IC) packages, printed circuit boards (PCBs), electronic assemblies, and power electronics. By leveraging the powerful Ansys Fluent CFD solver, Icepak delivers comprehensive solutions for electronic cooling, enabling detailed assessments of thermal and fluid dynamics within diverse electronic components. The software is seamlessly integrated with the Ansys Electronics Desktop (AEDT), which provides an intuitive graphical interface that enhances user experience and accessibility. Users can perform extensive analyses of conduction, convection, and radiation, taking advantage of advanced modeling capabilities for both laminar and turbulent flows, alongside species transport involving radiation and convection phenomena. Additionally, Ansys offers a complete PCB design solution that facilitates the simulation of PCBs, ICs, and packages, leading to accurate evaluations of entire electronic systems. This integration empowers engineers to refine their thermal management approaches, ensuring that electronic devices operate reliably and efficiently while meeting performance requirements in various applications. Ultimately, the robust features of Ansys Icepak make it an essential tool for engineers focused on optimizing the thermal performance of electronic technologies. -
14
Sigrity X Platform
Cadence Design Systems
"Revolutionize electronic design with unmatched performance and precision."Step into the future with the Sigrity X Platform, where groundbreaking innovation meets optimal performance. Experience unmatched signal and power integrity for your PCB and IC package designs, allowing you to transcend the current limitations of signal integrity (SI) and power integrity (PI) technology. Imagine expertly maneuvering through the complex landscape of electronic design, not only meeting your objectives but also surpassing them with extraordinary efficiency and precision. With Sigrity X, you are utilizing a revolutionary tool that enables seamless incorporation of in-design analysis within the Allegro X PCB and IC Package platforms. Dive into a comprehensive suite of SI/PI analysis, in-design interconnect modeling, and PDN analysis tools meticulously crafted to enhance your performance, ensuring your projects consistently exceed expectations and remain on schedule and within budget. Harness the potential of the Sigrity X Platform to assure outstanding performance and dependability in your upcoming designs, establishing a new benchmark for success. This is your chance to transform the landscape of electronic design and spearhead innovation in your field, paving the way for future advancements. By embracing these capabilities, you are not just improving your current projects; you are setting yourself up for sustained excellence in the years to come. -
15
PathWave Advanced Design System (ADS)
Keysight Technologies
Streamline design workflow with integrated tools and templates.PathWave ADS optimizes the design workflow by offering integrated templates that enable users to kickstart their projects with greater efficiency. With an extensive array of component libraries, finding the necessary parts becomes a simple task. The automatic synchronization with layout provides a clear view of the physical arrangement as schematic designs are created. This data-driven methodology allows teams to verify that their designs meet the required specifications. PathWave ADS boosts design confidence through its visualization and analytics tools, which produce informative graphs, charts, and diagrams to assist users. Additionally, wizards, design guides, and templates facilitate a quicker design process. The all-encompassing design workflow includes schematic design, layout, and simulations encompassing circuit, electro-thermal, and electromagnetic aspects. As frequencies and speeds in printed circuit boards (PCBs) continue to escalate, maintaining signal and power integrity becomes increasingly vital. Challenges related to transmission line effects can result in failures of electronic devices. It is crucial to accurately model traces, vias, and interconnects for a realistic simulation of the board, thereby ensuring that potential issues are identified and addressed early on. This comprehensive approach not only enhances efficiency but also significantly strengthens the overall reliability of electronic designs, ultimately contributing to the successful deployment of high-performance devices. -
16
Microwave Office
Cadence Design Systems
Elevate your RF design with powerful, intuitive simulation tools.Microwave Office serves as a comprehensive platform for designing a wide array of RF passive components such as filters, couplers, and attenuators, in addition to active devices that operate under small-signal (AC) conditions, including low noise and buffer amplifiers. Its linear architecture facilitates the simulation of S-parameters (Y/Z/H/ABCD), small-signal gain, linear stability, noise figure, return loss, and voltage standing wave ratio (VSWR), and it is enhanced with functionalities like real-time tuning, optimization, and yield analysis. Each E-series portfolio of Microwave Office includes synchronized schematic and layout editors, 2D and 3D visualizers, and a vast collection of libraries containing high-frequency distributed transmission models as well as RF models for surface-mount vendor components that come with footprints. Furthermore, it supports measurement-based simulations and RF plotting features. The Microwave Office PCB variant further augments the design experience by allowing for both linear and nonlinear RF circuit design through the sophisticated APLAC HB simulator, which boasts powerful multi-rate HB, transient-assisted HB, and time-variant simulation engines for thorough RF/microwave circuit analysis. This comprehensive suite of tools empowers engineers to innovate in RF design while effectively optimizing their development processes, ultimately fostering greater efficiency and creativity in their projects. As a result, Microwave Office not only streamlines workflows but also enhances the overall quality of the designs produced. -
17
AWR Design Environment Platform
Cadence Design Systems
Transform your RF design process with streamlined automation tools.The Cadence AWR Design Environment Platform simplifies the creation of RF and microwave products by leveraging design automation to enhance engineering productivity and reduce turnaround times. This all-in-one platform provides engineers with advanced tools for high-frequency circuit and system simulations, along with in-design electromagnetic (EM) and thermal analyses, resulting in efficient and precise high-frequency intellectual property. Its intuitive and robust user interface facilitates smart, customizable design workflows that cater to the specific needs of contemporary high-frequency semiconductor and PCB technologies. Moreover, it features a cohesive design capture system that enables a fluid front-to-back physical design process, ensuring that any changes made in the electrical schematic are automatically reflected in the corresponding physical layout. This synchronization not only streamlines the design process but also significantly promotes collaboration among engineering teams, creating a more agile and responsive development environment. Ultimately, the platform empowers engineers to innovate rapidly while maintaining high standards of accuracy and efficiency. -
18
PathWave EM Design
Keysight Technologies
Streamline your design process with advanced EM simulations.Electromagnetic (EM) simulation offers crucial insights before moving on to the physical prototyping phase. To boost both the speed and accuracy of your EM simulations, they should be customized effectively. By integrating EM analysis with circuit simulations, you can significantly enhance overall efficiency. Although completing EM simulations may take several hours, linking your EM simulation tools with PathWave Circuit Design software can drastically cut down on import and export times. This integration is designed to optimize your workflow, allowing for a seamless combination of EM analysis and circuit simulations. The 3D EM solid modeling environment supports the creation of custom 3D objects and facilitates the import of models from various CAD systems, which is vital for preparing a 3D geometry for 3DEM simulation. This preparation includes the definition of ports, boundary conditions, and material properties. Moreover, the environment comes equipped with a Finite Difference Time Domain (FDTD) simulator, which plays a crucial role in compliance testing for Specific Absorption Rate (SAR) and Hearing Aid Compatibility (HAC), ensuring that the designs align with necessary regulatory requirements. By leveraging these sophisticated features, you can not only streamline your design process but also significantly improve the efficacy of your electromagnetic analysis while ensuring that your products are compliant with industry standards. This careful orchestration of tools and processes ultimately leads to more innovative and reliable designs. -
19
Ansys PathFinder
Ansys
Streamlined ESD verification for reliable, cutting-edge chip designs.Ansys PathFinder-SC is a powerful and high-capacity tool specifically created for the effective planning, validation, and approval of IP and full-chip SoC designs, ensuring their durability and dependability against electrostatic discharge (ESD). By identifying the key elements that lead to design issues potentially resulting in chip failures due to occurrences like charged-device models (CDM) and human body models (HBM), Ansys PathFinder-SC provides essential insights for improvements. Its cloud-native architecture leverages the capabilities of thousands of computing cores, allowing for rapid full-chip turnaround times. Additionally, this solution has achieved certification from prominent foundries for performing current density evaluations and ESD approvals. With an all-encompassing integrated data modeling, extraction, and transient simulation engine, PathFinder-SC presents a streamlined end-to-end process for ESD verification. The tool utilizes a single-pass model that efficiently interprets standard design formats, sets ESD criteria, extracts resistive-capacitive (RC) values for the power network, and conducts ESD simulations to explore root causes, ultimately offering actionable recommendations for corrections and optimizations—all within a unified application. This comprehensive level of integration not only boosts operational efficiency but also significantly enhances the reliability of chip designs, making it an indispensable resource for engineers in the field. Moreover, the continuous updates and support ensure that users remain equipped with the latest advancements in ESD verification technology. -
20
Ansys HFSS
Ansys
Empowering engineers with precision in high-frequency design.Ansys HFSS is a highly adaptable 3D electromagnetic simulation software, tailored for the design and analysis of high-frequency electronic devices like antennas, components, interconnects, connectors, integrated circuits (ICs), and printed circuit boards (PCBs). This tool equips engineers with the capability to accurately model and simulate a diverse array of high-frequency electronic products, including antenna arrays, RF and microwave components, high-speed interconnects, filters, and IC packages. Employed worldwide, Ansys HFSS is vital for the development of high-speed electronics, which are essential for communication systems, advanced driver assistance systems (ADAS), satellite technologies, and internet-of-things (IoT) applications. Renowned for its unmatched capabilities and superior accuracy, HFSS empowers engineers to address RF, microwave, IC, PCB, and EMI challenges within even the most complex systems. The HFSS simulation suite boasts an extensive selection of solvers that address a wide range of electromagnetic problems, providing comprehensive support for engineers engaged in cutting-edge electronic design. Notably, Ansys HFSS not only enhances innovation but also significantly improves efficiency in the realm of high-frequency electronics, making it an indispensable tool for engineers in the industry. By streamlining the design process, it ultimately contributes to the advancement of technology in various high-tech fields. -
21
Ansys Electronics Desktop (AEDT)
Ansys
Accelerate product development while ensuring compliance and reliability.Leveraging the Ansys Electronics solution suite leads to a significant decrease in testing costs while ensuring compliance with regulatory requirements, boosting reliability, and greatly accelerating the product development process. This method not only aids in the development of high-quality and cutting-edge products but also allows you to focus on the most critical aspects of your designs using sophisticated simulation tools. Whether your projects involve antennas, RF, microwave, PCB, packaging, IC design, or electromechanical devices, our top-of-the-line simulators are readily available to assist you. These resources proficiently address issues like electromagnetic interference, thermal management, signal integrity, power integrity, parasitic impacts, cabling, and vibrations in your design concepts. Furthermore, our all-encompassing product simulation presents a unique chance to achieve first-pass success across a variety of systems, such as aircraft, automobiles, smartphones, laptops, and wireless charging devices, ensuring not only the success of your endeavors but also their innovative nature. Ultimately, this enables you to transform your concepts into reality with greater efficiency and precision than ever before. By adopting this advanced approach, you can stay ahead in a competitive market. -
22
Ansys Path FX
Ansys
Achieve optimal chip performance with unparalleled timing precision.Ansys Path FX provides exhaustive timing assessments for an entire System on Chip (SoC) while maintaining high standards without any trade-offs. Its unique cell modeling achieves SPICE-level precision for timing across different voltage and variation scenarios by utilizing a single library. With a fully threaded and distributed architecture, Path FX can efficiently scale to harness the power of thousands of CPUs. The technology behind its path-based timing analysis adeptly takes into account all significant factors affecting delay and constraints across various process, voltage, and temperature conditions. Furthermore, it automatically identifies and simulates every clock path in your design, simplifying the overall analysis workflow. In the current chip design environment, two major challenges include minimizing power consumption with lower supply voltages and managing the growing complexity tied to advanced silicon processes at 7nm and beyond. By effectively tackling these issues, Path FX establishes itself as an indispensable tool for engineers aiming to achieve optimal chip performance and reliability in their designs. This makes it an essential asset in the evolving landscape of semiconductor engineering. -
23
PathWave RF Synthesis
Keysight Technologies
Streamline RF design with advanced simulation and optimization tools.Explore the world of RF and microwave circuits and systems by utilizing advanced simulation and optimization tools that significantly improve your design workflow. Investigate the performance trade-offs that arise through the application of automatic circuit synthesis technology. PathWave RF Synthesis (Genesys) provides essential features tailored for all RF and microwave circuit board and subsystem designers. With PathWave Circuit Design, you can identify RF design errors that traditional spreadsheet analyses may miss. This comprehensive introductory design platform includes circuit, system, and electromagnetic simulators, allowing you to approach design evaluations with greater confidence before hardware implementation. A few clicks are all it takes to witness the automatic synthesis and optimization of your matching network. Following this, you can seamlessly transfer your design to PathWave Advanced Design System (ADS) for incorporation into more complex designs, guaranteeing smooth integration and improved functionality. By harnessing these innovative tools, you can not only streamline your design process but also significantly boost the overall productivity of your RF and microwave projects, paving the way for more successful outcomes. Additionally, the combination of these technologies empowers designers to achieve superior results with less effort and time. -
24
Ansys VeloceRF
Ansys
Streamline complex designs with rapid modeling and optimization.Ansys VeloceRF streamlines the design workflow by drastically reducing the time needed to synthesize and model complex spiral devices and transmission lines. Users can generate geometries for inductors or transformers in seconds, with modeling and analysis completed in just a few minutes. The software is designed to integrate effortlessly with leading EDA platforms, enabling the creation of layouts that are ready for tape-out. With Ansys VeloceRF, engineers can design devices featuring tightly packed components and lines, leading to a more efficient silicon layout. By evaluating the coupling between different inductive devices before delving into detailed layouts, it helps reduce the design footprint and may even do away with the necessity for guard rings. The size of inductors and the crosstalk among them can greatly influence the overall die size, and Ansys VeloceRF facilitates the development of smaller components through the application of optimization criteria and geometry constraints. Additionally, it examines the coupling between multiple inductors to optimize silicon space and boost the performance of inductors within the circuit, ensuring a more effective and efficient design process. This advanced feature not only increases the accuracy of designs but also simplifies the workflow for engineers managing intricate circuit layouts, ultimately leading to faster project completions and improved outcomes. -
25
Siemens Precision
Siemens
Unlock seamless FPGA design with unparalleled performance and integration.Precision offers a vendor-neutral approach to FPGA synthesis, delivering outstanding performance and efficient use of area while maintaining robust design features alongside strong integration with simulation and formal equivalence checking tools. Its products work harmoniously with Siemens' FormalPro LEC for equivalency verification and HDL Designer, which aids in design capture and verification when used alongside ModelSim/Questa. The entry-level tool, Precision RTL, stands out as a high-quality vendor-agnostic solution. In response to the specific demands of space and military aerospace industries, which typically require specialized FPGAs designed for inherent protection against single-event effects (SEEs), NanoXplore has introduced new FPGA solutions targeting this market. In collaboration with NanoXplore, Precision Synthesis has become the first to offer extensive synthesis support for the NG-Ultra device. Furthermore, Precision is compatible with the NXmap place and route tool, effectively covering the entire design workflow from RTL to gate level and ultimately generating the bitstream. This comprehensive integration not only simplifies the development process but also boosts the reliability of the end product, ensuring compliance with industry standards and specifications. Moreover, this synergy between tools enhances the overall efficiency of the design cycle, allowing engineers to focus more on innovation and less on compatibility issues. -
26
L-Edit MEMS
Siemens
Revolutionize MEMS design with seamless integration and innovation.L-Edit MEMS is recognized as the leading platform for the design of 3D MEMS devices. The process of developing a digital twin for MEMS technology begins with the design capture in L-Edit. Professionals working in MEMS benefit greatly from an integrated setup that combines device design, fabrication modeling, and links to FEM analysis tools. As the foremost standard in MEMS design, L-Edit MEMS boasts true native curve support, distinguishing it as the only tool specifically designed for both MEMS and integrated circuit design. Serving as a foundational element for the MEMS digital twin, this platform not only facilitates device design but also enables 3D modeling of the fabrication process and simulations through established collaborations. Users are able to create a 3D solid model derived from layout data and detailed fabrication descriptions. This capability offers an informative 3D visual representation of the entire MEMS fabrication process. Additionally, it accommodates multi-physics simulations alongside commonly used FEM analysis tools, permitting the exportation of models to FEM/BEM simulators for comprehensive 3D assessments. With its extensive component libraries, the platform streamlines design reuse and boosts productivity during the MEMS design phase. Ultimately, L-Edit MEMS provides a robust array of tools that not only empower designers to innovate but also enhance the efficiency of their workflows significantly. Moreover, its user-friendly interface ensures that both novice and experienced designers can navigate the complexities of MEMS design with ease. -
27
Multisim
NI
Transforming electronic education through intuitive simulation and design.Multisim™ software merges the well-established SPICE simulation with an intuitive schematic environment that facilitates the instant visualization and assessment of electronic circuit functionality. Its design prioritizes user engagement, aiming to support educators in solidifying circuit theory and improving student comprehension of concepts during their engineering education. By incorporating powerful circuit simulation and analysis into the design process, Multisim™ aids researchers and designers in significantly decreasing the number of printed circuit board (PCB) prototypes required, which in turn cuts development expenses considerably. Specifically designed for educational settings, Multisim™ functions as a valuable resource for courses and laboratories focused on analog, digital, and power electronics. With its extensive array of SPICE simulation capabilities, analysis tools, and PCB design features, Multisim™ enables engineers to refine their designs with greater efficiency and improve the performance of their prototypes. This software not only optimizes the design workflow but also promotes an interactive learning environment for students passionate about electronics, ultimately leading to a more thorough grasp of electronic concepts. By fostering such an engaging atmosphere, Multisim™ contributes significantly to the educational journey of future engineers. -
28
Siemens Aprisa
Siemens
Revolutionizing physical design for modern SoCs with efficiency.Designing at advanced process nodes requires a fresh strategy for place-and-route to effectively manage the increasing complexities involved. Aprisa distinguishes itself as a detailed routing-centric physical design platform specifically designed for modern SoCs. Functioning as a holistic RTL2GDSII solution, Aprisa supports digital implementation by offering extensive synthesis and place-and-route features for both top-level hierarchical designs and individual block executions. Its compatibility with signoff tools for STA timing and DRC ensures a high-quality correlation for tape-out, significantly reducing design closure hurdles while maintaining optimal performance, power efficiency, and area enhancement (PPA). Thanks to its impressive out-of-the-box performance, Aprisa empowers physical designers to optimize each step of the place-and-route process, thereby expediting their time-to-market. Furthermore, the integrated architecture and shared analysis engines in Aprisa provide exceptional timing and DRC correlation throughout all implementation phases and with signoff tools, which greatly diminishes the number of flow iterations and engineering change orders (ECOs). Consequently, this progressive methodology not only boosts productivity but also significantly elevates the quality of design in intricate projects. This shift in approach is vital as the semiconductor industry continues to evolve rapidly, demanding even more sophisticated solutions. -
29
Ansys Pharos
Ansys
Streamline your designs with advanced EM analysis capabilities.Pharos combines the outstanding electromagnetic (EM) engine capabilities of Ansys with a dedicated high-capacity circuit simulation engine to perform coupling analyses and evaluate potential EM crosstalk aggressors for each victim node. By pinpointing the most at-risk nets, designers can focus their efforts on reducing EM crosstalk in these vital connections, which helps minimize risks during the design phase. In addition, Pharos integrates a robust extraction engine alongside an internal simulation engine to carry out thorough EM analyses and rank potential aggressors in relation to each victim net. This feature allows designers to prioritize the most critical nets in their designs effectively. As the complexity of designs increases and the variety of magnetic field interference grows, the task of identifying all susceptible victim/aggressor net pairs becomes increasingly challenging, often approaching the realm of impossibility. Therefore, Pharos proves to be an essential resource, simplifying the management of EM issues in complex electronic designs while ultimately enhancing overall design quality and reliability. -
30
Celsius PowerDC
Cadence Design Systems
Unlock precision power distribution with advanced DC analysis technology.Cadence Celsius PowerDC technology provides effective DC analysis that guarantees dependable power distribution. This system incorporates electrical and thermal simulations to enhance precision. By swiftly pinpointing regions experiencing significant IR drops and thermal hotspots, it effectively reduces the likelihood of design failures. The technology maintains high accuracy, even in intricate designs featuring various voltage domains and complex plane structures, delivering definitive IR analysis for both boards and packages. Additionally, DC simulations can be conveniently initiated through PowerTree Technology, utilizing source and sink definitions established during the schematic design phase. Furthermore, it accommodates diverse structures, such as stacked boards, multiple chips, and all widely used packaging types, making it a versatile choice for engineers.