Azore CFD
Azore is a software tool designed for computational fluid dynamics (CFD) that focuses on the analysis of fluid movement and thermal transfers. By utilizing CFD, engineers and scientists can numerically tackle a diverse array of problems related to fluid mechanics, thermal dynamics, and chemical interactions through computer simulations. Azore excels in modeling a variety of fluid dynamics scenarios, encompassing air, liquids, gases, and flows containing particles. Its applications are vast, including the modeling of liquid flow through piping systems and assessing water velocity profiles around submerged objects. Furthermore, Azore is adept at simulating the behavior of gases and air, allowing for the exploration of ambient air velocity patterns as they navigate around structures, as well as examining flow dynamics, heat transfer, and mechanical systems within enclosed spaces. This robust CFD software can effectively model nearly any incompressible fluid flow scenario, addressing challenges associated with conjugate heat transfer, species transport, and both steady-state and transient flow conditions. With such capabilities, Azore serves as an invaluable asset for professionals in various engineering and scientific fields requiring precise fluid dynamics simulations.
Learn more
Altium Develop
Altium Develop brings together engineers, developers, and manufacturing partners in a single connected workspace. By integrating design tools with real-time collaboration, it ensures that every stakeholder—from hardware and software teams to supply chain managers—can contribute at the right moment. The platform eliminates silos by linking requirements, component data, and production insights directly to the design process. With early visibility and seamless feedback loops, organizations can reduce errors, cut rework costs, and move from idea to finished product more efficiently.
Learn more
Ansys Maxwell
Ansys Maxwell is an electromagnetic field solver specifically designed for use in electric machines, transformers, wireless charging solutions, permanent magnet latches, actuators, and a range of electromechanical devices. It proficiently analyzes static, frequency-domain, and time-varying electric and magnetic fields. The software is equipped with specialized design tools tailored for electric machines and power converters. With Maxwell, users are able to thoroughly evaluate the nonlinear and transient characteristics of electromechanical components and their effects on drive circuits and control system frameworks. By leveraging Maxwell’s advanced electromagnetic field solvers in conjunction with circuit and systems simulation technologies, users can acquire valuable insights into the behavior of electromechanical systems before they build a physical prototype. Furthermore, Maxwell is esteemed for its ability to provide dependable simulations of low-frequency electromagnetic fields prevalent in industrial settings, which is crucial for achieving superior design and functionality in practical applications. This powerful capability establishes Maxwell as an indispensable resource for engineers aiming to enhance their designs and elevate overall system efficiency. As such, it plays a pivotal role in the innovation and optimization of electromechanical engineering projects.
Learn more
Ansys Electronics Desktop (AEDT)
Leveraging the Ansys Electronics solution suite leads to a significant decrease in testing costs while ensuring compliance with regulatory requirements, boosting reliability, and greatly accelerating the product development process. This method not only aids in the development of high-quality and cutting-edge products but also allows you to focus on the most critical aspects of your designs using sophisticated simulation tools. Whether your projects involve antennas, RF, microwave, PCB, packaging, IC design, or electromechanical devices, our top-of-the-line simulators are readily available to assist you. These resources proficiently address issues like electromagnetic interference, thermal management, signal integrity, power integrity, parasitic impacts, cabling, and vibrations in your design concepts. Furthermore, our all-encompassing product simulation presents a unique chance to achieve first-pass success across a variety of systems, such as aircraft, automobiles, smartphones, laptops, and wireless charging devices, ensuring not only the success of your endeavors but also their innovative nature. Ultimately, this enables you to transform your concepts into reality with greater efficiency and precision than ever before. By adopting this advanced approach, you can stay ahead in a competitive market.
Learn more