List of the Best SwiftComp Alternatives in 2025
Explore the best alternatives to SwiftComp available in 2025. Compare user ratings, reviews, pricing, and features of these alternatives. Top Business Software highlights the best options in the market that provide products comparable to SwiftComp. Browse through the alternatives listed below to find the perfect fit for your requirements.
-
1
Altair SimSolid
Altair
Revolutionize engineering simulations with speed, precision, and flexibility.SimSolid represents a groundbreaking advancement in simulation technology tailored for engineers, designers, and analysts alike. Capable of conducting structural analyses on comprehensive CAD assemblies in mere minutes, SimSolid streamlines the simulation process by removing the need for geometry preparation and meshing, which are often tedious and prone to errors in traditional methods. With its ability to quickly simulate various design scenarios under realistic conditions, users can work with any CAD model, including those in the early stages of development. The platform's tolerance for imprecise geometry allows for analyses without the necessity to simplify designs beforehand. Furthermore, SimSolid accommodates all connection types—such as bolts, nuts, bonded joints, rivets, and sliding interactions—and provides analysis for linear static, modal, and thermal properties. This advanced tool also encompasses intricate coupled effects, nonlinear behaviors, and dynamic responses, making it a versatile choice for comprehensive engineering evaluations. Thus, SimSolid not only enhances efficiency but also expands the capabilities of simulation in the engineering workflow. -
2
Ansys Motor-CAD
Ansys
Accelerate electric machine design with rapid multiphysics simulations.Ansys MotorCAD serves as a specialized tool tailored for the design of electric machines. It enables rapid simulations of multiphysics throughout the complete torque-speed operating spectrum. With MotorCAD, engineers can assess various motor topologies within this full range, leading to designs that are fine-tuned for size, efficiency, and overall performance. The software comprises four modules—Emag, Therm Lab, and Mech—facilitating swift and iterative multiphysics calculations, thereby allowing users to transition from initial concepts to final designs more expeditiously. Moreover, MotorCAD empowers users to investigate a wider array of motor topologies and thoroughly analyze the effects of advanced losses during the preliminary phases of electromechanical design, aided by its efficient data input system. The latest update introduces robust new features aimed at optimizing design, enhancing multi-physics analysis, and improving system modeling for electric motors. Additionally, the speed of multiphysics simulations across the entire torque-speed spectrum ensures that engineers can make informed decisions quickly. In summary, MotorCAD significantly accelerates the design process while providing comprehensive analytical capabilities. -
3
SOLIDWORKS Simulation
SolidWorks
Enhance designs, reduce costs, and innovate confidently today!Testing your designs in practical environments can greatly improve the quality of your products while also reducing the expenses related to prototyping and physical testing. The SOLIDWORKS® Simulation suite provides an intuitive array of structural analysis tools that utilize Finite Element Analysis (FEA) to predict how a product will perform under real-world conditions by virtually assessing CAD models. This extensive suite includes features for both linear and non-linear static and dynamic analyses, enabling comprehensive evaluations. With SOLIDWORKS Simulation Professional, you can enhance your designs by examining aspects like mechanical strength, longevity, topology, natural frequencies, as well as investigating heat distribution and the risk of buckling. It also supports sequential multi-physics simulations to improve design precision. In contrast, SOLIDWORKS Simulation Premium offers a more detailed examination of designs, focusing on nonlinear and dynamic responses, various loading scenarios, and composite materials. This advanced level includes three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, which together provide a robust assessment of your engineering initiatives. By utilizing these sophisticated tools, engineers are empowered to foster greater design confidence and push the boundaries of innovation in their projects. Ultimately, the integration of such simulations leads to a more efficient design process and superior end products. -
4
Digimat
e-Xstream engineering
Revolutionize composite material design with advanced predictive modeling.e-Xstream engineering focuses on developing and marketing the Digimat software suite, which incorporates sophisticated multi-scale material modeling capabilities designed to expedite the formulation of composite materials and structures. As a crucial part of the 10xICME Solution, Digimat allows for comprehensive analysis of materials at a microscopic scale, aiding in the creation of micromechanical models that are vital for understanding both micro- and macroscopic interactions. The software's material models facilitate the integration of processing simulations with structural finite element analysis (FEA), enhancing prediction accuracy by accounting for the influence of processing conditions on the performance of the final product. By leveraging Digimat as an effective and predictive resource, users can streamline the design and manufacture of advanced composite materials and components, realizing significant reductions in both time and costs. This capability not only boosts efficiency but also inspires engineers to explore new frontiers in the applications of composite materials, thereby driving innovation forward. As a result, the evolution of material science continues to thrive, with Digimat playing an instrumental role in shaping the future of engineering. -
5
RFEM
Dlubal Software
Streamlined FEA software for dynamic, precise structural modeling.The RFEM program for finite element analysis (FEA) facilitates rapid and straightforward modeling, along with structural and dynamic calculations, enabling the design and construction of various models featuring members, plates, walls, folded plates, shells, and additional solid elements. This modular software allows users to integrate the main RFEM program with relevant add-ons tailored to their specific needs. Designed as a comprehensive structural analysis tool, RFEM provides structural engineers with a 3D FEA solution that adheres to all contemporary civil engineering standards. Thanks to its efficient data input and user-friendly interface, users can easily model both simple and intricate structures. At the core of this modular software is the RFEM program, which serves as the foundation for generating structures, materials, loads, and plans for both spatial and planar structural systems that encompass plates, walls, shells, and members. Additionally, RFEM enables the creation of hybrid structures and allows for the modeling of contact elements, making it versatile for a wide range of applications in engineering design. This capability ensures that engineers can effectively simulate real-world conditions and interactions in their structural models. -
6
VABS
AnalySwift
Effortlessly simplify complex composite beam modeling for innovation.VABS serves as a popular instrument for conducting cross-sectional analyses, enabling quick and uncomplicated calculations of beam properties and the retrieval of three-dimensional fields in composite beams, commonly utilized in components like helicopter and wind turbine blades. It is unique in its capacity to disentangle a complex 3D slender solid with intricate microstructures into a basic engineering beam model. Developed by AnalySwift, which has its roots in aerospace, tools specifically designed for composite beams, including those used in helicopter rotor blades, propellers, high aspect ratio wings, and various wing section designs, as well as plates, shells, and three-dimensional frameworks, have emerged. VABS has been applied in the wind turbine sector for several years, consistently delivering rapid and accurate modeling results for wind turbine blades. Additionally, SwiftComp broadens its functionality, providing solutions for plates, shells, and 3D composite configurations. As the automotive industry increasingly adopts composite materials in vehicle construction, there is a significant opportunity to apply both SwiftComp and VABS for modeling a wide spectrum of structural forms, including beams, plates, and shells, further enhancing their usability. The adaptability and efficiency of these tools render them essential across various engineering fields, thus fostering innovative designs in multiple industries. -
7
VSim
Tech-X
Unlock precision solutions for complex scientific challenges effortlessly.VSim represents an advanced Multiphysics Simulation Software specifically designed for engineers and scientists focused on finding precise solutions to intricate problems. By seamlessly integrating methodologies such as Finite-Difference Time-Domain (FDTD), Particle-in-Cell (PIC), and Charged Fluid (Finite Volume), it delivers dependable results across a range of applications, including plasma modeling. This software excels as a parallel tool, efficiently addressing large-scale challenges with fast simulations driven by algorithms fine-tuned for high-performance computing scenarios. Recognized by researchers in over 30 nations and employed by experts in diverse sectors like aerospace and semiconductor manufacturing, VSim provides outcomes with validated accuracy that professionals can trust. Created by a team of committed computational scientists, Tech-X's software boasts thousands of citations in academic literature, with VSim being a key resource in numerous prominent research institutions globally. Additionally, the software's ongoing development showcases its adaptability and dedication to fulfilling the increasing needs of contemporary scientific exploration. As it advances, VSim remains a vital asset for those pushing the boundaries of innovation in various scientific fields. -
8
FEATool Multiphysics
Precise Simulation
Simplify complex simulations with versatile, user-friendly tools.FEATool Multiphysics is a comprehensive physics simulation toolbox that simplifies the process of using finite element analysis (FEA) and computational fluid dynamics (CFD). It features an integrated platform with a cohesive user interface that supports various multi-physics solvers, including OpenFOAM, SU2 Code, and FEniCS. This versatility enables users to effectively model interconnected physical phenomena across a range of applications, such as fluid dynamics, thermal transfer, structural analysis, electromagnetics, acoustics, and chemical engineering. As a reliable resource, FEATool Multiphysics is widely utilized by engineers and researchers in sectors like energy, automotive, and semiconductor manufacturing, enhancing their ability to conduct complex simulations with ease. Its user-friendly design makes it accessible for both seasoned professionals and newcomers alike. -
9
AxisVM
InterCAD
Revolutionizing design with powerful, user-friendly modeling solutions.AxisVM is a key player in the design industry, focusing on structures such as buildings, industrial facilities, and geotechnical projects. Its powerful finite element solver, paired with user-friendly modeling tools, makes it suitable for bridge design and the development of composite structures, machinery, and vehicles. In addition to standard features, users can opt for specialized design modules that cater to reinforced concrete, steel, timber, and masonry components and connections. The software also offers unique elements and analytical capabilities that support the creation of bespoke and innovative structures. Users can create comprehensive reports that include tables, drawings, and thorough design calculations, all of which can be personalized with specific headings and text. Moreover, these reports are updated automatically to align with the most recent model data and outcomes, which significantly improves accuracy and efficiency. This ensures that all project documentation stays fully aligned with the current progress, allowing for seamless updates and adjustments as needed. Such capabilities empower users to maintain a high level of professionalism and organization throughout their design processes. -
10
SPACE GASS
SPACE GASS
Transform your structural designs with powerful 3D analysis tools.SPACE GASS is a robust 3D analysis and design software specifically created for structural engineers. It encompasses a wide range of features suitable for designing everything from simple beams and trusses to intricate structures such as buildings, towers, tanks, cable systems, and bridges. Users can take advantage of its powerful 64-bit multi-core solver, striking 3D visualizations, and a variety of specialized elements, including plate, frame, cable, and tension/compression-only types, along with tools for addressing moving loads and seamless integration with various CAD and building management systems. Opting for SPACE GASS allows for the optimization of resources, yielding cost-effective, safe, and efficient designs that meet modern engineering demands. The software's user-friendly graphical interface enables immediate visual feedback on modifications, which significantly enhances the design workflow. Additionally, it includes a rapid sparse matrix solver that fully utilizes multi-core processing capabilities, fostering increased efficiency in calculations. With a comprehensive suite of structural modeling tools, analysis techniques, and design modules, the software caters to a wide spectrum of engineering needs. Furthermore, an extensive library of video tutorials is provided to assist users in navigating complex tasks with ease. Ultimately, SPACE GASS can be set up for either stand-alone operations or floating network systems, adding a layer of versatility for various working environments and preferences. This adaptability ensures that it can accommodate the diverse requirements of structural engineering projects. -
11
Ansys Mechanical
Ansys
Empowering engineers with advanced, customizable finite element analysis solutions.Ansys Mechanical is recognized as a leading finite element solver, providing capabilities for structural, thermal, acoustics, transient, and nonlinear analyses that enhance modeling efforts. This robust software equips users to address complex structural engineering problems, enabling faster and more informed design choices. The suite's finite element analysis (FEA) solvers offer the adaptability to customize and automate solutions for various structural mechanics challenges while allowing the investigation of numerous design options through parameterization. With a wide range of analysis tools, Ansys Mechanical fosters a dynamic ecosystem that encompasses everything from geometry preparation for analysis to the integration of additional physics for improved accuracy. Its intuitive and flexible interface ensures that engineers of varying experience levels can efficiently achieve dependable outcomes. Additionally, Ansys Mechanical creates a unified platform that specifically utilizes finite element analysis (FEA) for structural assessments, making it a crucial asset in engineering design processes. Ansys Mechanical's extensive features make it well-suited to address the evolving demands of contemporary engineering professionals, ensuring they remain at the forefront of innovation. Ultimately, it is an invaluable resource that streamlines the engineering workflow and promotes effective problem-solving strategies. -
12
COMSOL Multiphysics
Comsol Group
Empower innovation with advanced multiphysics modeling capabilities.Leverage the power of COMSOL's multiphysics software to accurately model real-world designs, devices, and processes. This adaptable simulation platform is built on advanced numerical methods and offers extensive features for both fully coupled multiphysics and individual physics modeling. Users can follow a comprehensive modeling workflow that encompasses everything from creating geometries to conducting postprocessing analyses. The software includes user-friendly tools that facilitate the development and implementation of simulation applications. COMSOL Multiphysics® guarantees a uniform user interface and experience across a wide range of engineering disciplines and physical phenomena. Moreover, specific functionalities can be accessed through add-on modules tailored to areas such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can also choose from various LiveLink™ products to ensure seamless integration with CAD systems and other external software. In addition, applications can be deployed via COMSOL Compiler™ and COMSOL Server™, allowing the creation of models and simulation applications driven by physics within this robust software ecosystem. The extensive capabilities of COMSOL empower engineers to push the boundaries of innovation while enhancing their projects effectively, ultimately leading to improved efficiency and creativity in design and analysis processes. -
13
Simcenter Nastran
Siemens
Unmatched FEM solver for reliable, innovative engineering solutions.Simcenter Nastran is recognized as a premier finite element method (FEM) solver, celebrated for its remarkable computational capabilities, accuracy, reliability, and scalability. This all-encompassing software offers powerful solutions for a wide range of applications, such as linear and nonlinear structural analysis, structural dynamics, acoustics, rotor dynamics, aeroelasticity, thermal analysis, and optimization. A significant advantage of having such a varied selection of solutions within one solver is the standardization of input/output file formats across all analysis types, which greatly simplifies the modeling process. Whether used as a standalone enterprise solver or as part of Simcenter 3D, Simcenter Nastran plays a crucial role for manufacturers and engineering companies in various industries, including aerospace, automotive, electronics, heavy machinery, and medical devices. By meeting their essential engineering computing needs, it empowers these sectors to produce safe, dependable, and optimized designs while keeping up with increasingly stringent design schedules. This adaptability and effectiveness render Simcenter Nastran an essential tool in today's engineering environment, enhancing the productivity and innovation of design teams. Ultimately, its comprehensive features and reliability contribute significantly to the overall success of engineering projects. -
14
SolidFEA
BIMWERX
Revolutionizing structural design with accessible, efficient analysis tools.SolidFEA is an innovative solid finite element analysis tool designed to make advanced structural engineering design more reachable and cost-efficient. Leveraging the power of the Calculix engine, it offers comprehensive sub-model analysis while demanding less financial outlay and computational resources compared to rivals such as Abaqus. This software excels in addressing complex engineering challenges, particularly in areas like steel connections and bridge design, empowering users by simplifying access to specialized tools. Notably, SolidFEA's capability to import IFC file formats allows it to seamlessly fit into current engineering workflows, thereby enhancing the capabilities of our GenFEA software for comprehensive structural assessments. By reducing the traditional barriers associated with solid finite element analysis (FEA), SolidFEA signifies a major leap forward in structural engineering design, fostering innovation by opening the door for more engineers to engage in intricate projects. Moreover, its intuitive interface and compatibility features pave the way for a new standard of efficiency in engineering methodologies, ultimately transforming how professionals approach complex structural challenges. -
15
GT STRUDL
Hexagon PPM
Revolutionizing structural engineering with precision, speed, and versatility.GT STRUDL® is recognized as a multifaceted structural engineering software that combines 3D CAD modeling with sophisticated 64-bit computation solvers across its various iterations. It offers an extensive toolkit for tackling a diverse range of structural engineering and finite element analysis tasks, including both linear and nonlinear static and dynamic evaluations, which allows for high precision in a fraction of the time that many other design tools require. Tailored for structural engineers, GT STRUDL effectively navigates the complexities encountered in numerous sectors such as power generation, civil engineering, marine applications, and infrastructure development. Additionally, this high-quality software is equipped with features that promote interoperability, advanced structural analysis, database-driven design, and rigorous quality assurance, all designed to optimize the engineering design workflow. The seamless integration of these capabilities positions GT STRUDL as an indispensable tool for engineers engaged in complex project demands. Ultimately, its robust performance and user-friendly interface further enhance the overall engineering experience, making it a preferred choice among professionals in the field. -
16
FloCAD
C&R Technologies
Optimize thermal systems with advanced fluid dynamics analysis.FloCAD® is an add-on module for Thermal Desktop®, providing a robust solution for thermohydraulic analysis that covers both fluid dynamics and heat transfer mechanisms. The methodology for developing fluid flow models in FloCAD is similar to that used for thermal models, enabling users to leverage a variety of shared commands across both categories. Users have the flexibility to construct FloCAD models through a free-form technique, which simplifies the representation of flow networks, or they can choose geometry-based modeling that integrates features such as pipe centerlines, cross-sections, and complex vessels, along with convection calculations associated with finite difference or finite element thermal frameworks. As a sophisticated tool for analyzing pipe flow, FloCAD proficiently addresses pressure losses in piping systems caused by factors such as bends, valves, tees, and changes in flow area. This extensive functionality positions FloCAD as an essential resource for engineers aiming to enhance their system designs and improve overall efficiency. Moreover, the ability to model various fluid dynamics scenarios makes it an indispensable tool for tackling diverse engineering challenges. -
17
OnScale Solve
OnScale
Revolutionizing engineering simulations with powerful cloud capabilities.OnScale emerges as a trailblazing platform in the realm of Cloud Engineering Simulation, combining sophisticated multiphysics solver technology with the limitless power of cloud supercomputers. This cutting-edge solution allows engineers to run numerous full 3D multiphysics simulations simultaneously, facilitating the development of genuine Digital Prototypes that accurately reflect the operational dynamics of complex high-tech devices. Aiming to provide an outstanding experience in Cloud Engineering Simulation, OnScale Solve is crafted to be intuitive, resilient, and efficient. It functions effortlessly on both public and private cloud infrastructures and includes a user-friendly web interface, an API for seamless integration into existing workflows, customizable scripting options for personalized engineering analyses, and plugins that enhance its modeling capabilities. Additionally, OnScale Solve empowers engineers to synthetically produce data essential for training sophisticated AI/ML algorithms, thus fostering technological innovation. This all-encompassing platform ensures engineers possess the necessary tools to redefine the limits of simulation and design, ultimately driving progress in engineering disciplines. By integrating these features, OnScale not only enhances the simulation process but also encourages a collaborative environment for engineers to explore new frontiers in technology. -
18
DC-AM DigitalClone for Additive Manufacturing
Sentient Science
Revolutionizing metal additive manufacturing with precision and efficiency.DigitalClone for Additive Manufacturing (DCAM) offers an extensive range of simulation and modeling tools specifically for metal additive manufacturing, facilitating a smooth process for design and analysis. Utilizing a multiscale and multi-physics analysis methodology, DC-AM effectively connects the process with the microstructure and fatigue characteristics of additively manufactured components, which allows for a thorough computational evaluation of their quality and performance. By providing unparalleled insights into build conditions and the attributes of the final products, DC-AM promotes the integration of additive manufacturing within safety-critical industries. This innovative approach not only reduces both time and costs associated with production but also streamlines the qualification processes for parts, ultimately enhancing efficiency in manufacturing practices. Additionally, the capabilities of DC-AM empower engineers to make informed decisions, thereby improving overall product reliability and safety standards. -
19
Fidelity CFD
Cadence Design Systems
Empower innovation with advanced, intuitive CFD engineering solutions.Transform your engineering workflows with a unique and intuitive CFD platform specifically crafted for multidisciplinary design and optimization. The significance of computational fluid dynamics (CFD) in analyzing multiphysics systems cannot be overstated, as it facilitates the simulation of fluid dynamics and thermodynamic properties through sophisticated numerical models. The Cadence Fidelity CFD platform is utilized by engineers for a variety of design applications, such as propulsion, aerodynamics, hydrodynamics, and combustion, which ultimately improves product efficiency and reduces the reliance on expensive and time-consuming physical prototypes. This powerful Fidelity CFD platform provides a comprehensive end-to-end solution that is specifically designed for use in aerospace, automotive, turbomachinery, and marine industries. Featuring efficient workflows, a massively parallel architecture, and state-of-the-art solver technology, the platform ensures exceptional performance and accuracy, significantly enhancing engineering productivity to tackle modern design challenges. Moreover, Fidelity not only simplifies the intricacies of complex engineering processes but also empowers engineers to innovate swiftly and effectively, making it an invaluable tool in today's fast-paced technological landscape. As a result, teams can achieve remarkable outcomes in their projects, paving the way for cutting-edge advancements. -
20
STAAD
Bentley
Empowering global structural design with flexibility and precision.STAAD enables you to design, evaluate, and document structural projects on a global scale while allowing you to work with any material of your choice. This software is crafted to provide a flexible solution that caters to all your structural engineering needs right from the foundational level. Serving as a comprehensive tool for structural finite element analysis and design, STAAD empowers users to assess any structure under a range of loads, such as static, dynamic, wind, seismic, thermal, and moving forces. With its various versions, you can choose the one that aligns perfectly with your project requirements. Highly regarded for its analytical prowess, broad applications, interoperability, and efficiency, STAAD has become a preferred option for structural engineers around the world. It supports 3D structural analysis and design for both steel and concrete systems, enhancing its versatility. Additionally, users can easily transform a physical model created in the software into an analytical model for more detailed structural evaluation. STAAD adheres to numerous design code standards, ensuring that engineering practices remain compliant and precise. The software’s intuitive interface not only boosts productivity but also simplifies complex design workflows. Ultimately, STAAD stands out in the field of structural engineering, making it an indispensable tool for professionals. -
21
RIBTEC
RIB
Empowering structural engineers with innovative, efficient design solutions.During periods of constrained timelines or scarce resources, comprehensive solutions become essential. RIBTEC offers numerous synergies in calculation, design, and construction processes. When utilizing Building Information Modeling (BIM), users experience a quicker data flow that enhances the overall efficiency of structural design. RIB's software offerings are tailored specifically for structural engineers and encompass a wide range of functions, including building, ground, and finite element calculations, as well as support for tunnel and bridge construction and the creation of formwork or reinforcement plans. Since its inception in 1961, RIB has established itself as a leader in structural design and finite element modeling (FEM). Over 5,000 engineering offices, along with inspection and construction engineers, as well as planning departments from both public and private sectors, rely on the capabilities of RIBTEC programs. With a comprehensive suite of more than 100 applications, RIBTEC addresses every facet of structural design, ensuring versatility and precision for its users. As the industry evolves, RIBTEC continues to innovate, adapting its solutions to meet the changing demands of structural engineering projects. -
22
Altair S-FRAME
Altair
Streamline structural design with advanced modeling and analysis.S-FRAME offers users the ability to design, analyze, and model a diverse range of structures, accommodating various geometric complexities, types of materials, loading conditions, nonlinear behaviors, and compliance with numerous design codes. With automated framework generators, it facilitates quick model creation and allows for the importation of models via BIM and DXF links, significantly boosting productivity through integrated tools for both concrete and steel design that promote optimization, code compliance, and thorough report generation. Users can quickly define structures through advanced modeling automation, which includes options to create either standard or custom trusses and utilize cloning tools for duplicating any part of their models. The capacity to import existing BIM and DXF models further streamlines the modeling process, saving considerable time. Additionally, S-FRAME incorporates advanced meshing tools to create a finite element mesh, enabling users to obtain detailed analytical results for specific areas of interest. Users can also enhance their analysis by easily converting members into multi-shell models, thus expanding their analytical capabilities. In addition to these features, S-FRAME fosters collaboration among teams by allowing for easy sharing of models and results. Ultimately, S-FRAME serves as a robust solution that meets the evolving demands of contemporary structural design and analysis. -
23
MSC Nastran
MSC Software
Transforming structural analysis with innovation, precision, and reliability.MSC Nastran is a powerful tool for conducting multidisciplinary structural analysis, enabling engineers to perform a wide range of evaluations, including static, dynamic, and thermal studies in both linear and nonlinear scenarios. This software combines automated structural optimization with advanced fatigue analysis technologies, all supported by cutting-edge computing capabilities. Engineers utilize MSC Nastran to ensure that structural systems meet essential criteria for strength, stiffness, and durability, thereby preventing failures related to excessive stresses, resonance, buckling, or detrimental deformations that could compromise both structural integrity and safety. Moreover, MSC Nastran plays a crucial role in enhancing the cost-effectiveness and comfort of passenger experiences in various structural designs. By optimizing the performance of existing frameworks or developing unique product features, this tool helps businesses maintain a competitive advantage in the market. It also aids in proactively identifying potential structural challenges that may occur during a product's lifecycle, effectively minimizing downtime and lowering associated expenses. In addition, MSC Nastran fosters a culture of innovation among engineers, allowing for the continuous improvement and refinement of their designs. As a result, this software becomes an invaluable asset in the engineering toolkit, driving progress and excellence in structural analysis. -
24
Ansys Meshing
Ansys
Achieve precise simulations effortlessly with advanced meshing solutions.The mesh plays a crucial role in determining the accuracy, convergence rates, and speed of a simulation. Ansys provides a comprehensive suite of tools aimed at generating the optimal mesh necessary for precise and efficient outcomes. Their software encompasses a range of meshing solutions that are suitable for multiphysics applications, offering everything from straightforward automatic meshing to intricate, custom designs. With integrated smart defaults, the software streamlines the meshing process, making it user-friendly and accessible, while still ensuring adequate resolution to effectively capture solution gradients for trustworthy results. Ansys's meshing capabilities include diverse options, incorporating both automated and bespoke meshes tailored to specific needs. The available techniques span a wide range, with choices from high-order to linear elements, as well as rapid tetrahedral and polyhedral configurations, along with superior quality hexahedral and mosaic arrangements. Leveraging Ansys's sophisticated meshing features allows users to significantly reduce the time and effort necessary for obtaining accurate results, thereby improving overall productivity in the simulation workflow. Furthermore, the versatility of these tools ensures that users can adapt their approach based on the unique requirements of each project, maximizing efficiency throughout the simulation process. -
25
nCode DesignLife
HBK World
Revolutionize design accuracy with advanced fatigue lifespan solutions.nCode DesignLife is an advanced design instrument that identifies critical areas and calculates feasible fatigue lifespans, utilizing leading finite element (FE) analysis results for both metals and composites. This groundbreaking tool allows design engineers to elevate their methods beyond mere stress evaluations, facilitating the simulation of realistic loading conditions that help to reduce the chances of both under-design and over-design, which can result in costly revisions down the line. The software also includes capabilities such as virtual shaker testing, weld fatigue analysis, vibration fatigue assessments, crack growth tracking, composite fatigue evaluations, and studies on thermo-mechanical fatigue. It employs cutting-edge technologies to assess multiaxial stress, weld durability, short-fiber composites, vibrational effects, crack development, and thermal stress fatigue. Offering a user-friendly graphical interface, it streamlines extensive fatigue evaluations by integrating data from prominent FEA tools like ANSYS, Nastran, Abaqus, Altair OptiStruct, and LS-Dyna. Furthermore, it features multi-threaded and distributed processing to effectively manage large finite element models and optimize usage schedules. By combining these robust features, the tool ultimately empowers engineers to produce more dependable and efficient designs, which can significantly enhance product performance in varied applications. -
26
VisualAnalysis
Integrated Engineering Software
Transform your engineering projects with ease and precision.Many professionals turn to VisualAnalysis (VA) to effectively meet their project timelines. Users often refer to it as "remarkable value" and "extremely easy to navigate." The software is designed with cost-effective tools essential for a variety of projects. It supports the development of 3D models for different structures, ranging from entire buildings to tanks and towers, while also providing both static and dynamic response analysis features. Additionally, it conducts design code checks for materials including steel, wood, concrete, cold-formed steel, and aluminum. VisualAnalysis offers an extensive array of analysis and design features, such as automatic plate meshing, a command interface, nonlinear elements, and dynamic time history analysis. Its 3D static and dynamic finite element analysis (FEA) capabilities cater to civil, mechanical, aerospace, and various structural assessments. Moreover, it provides optional assistance for building code load combinations. Users can conveniently apply loads, allocate area loads to structural components, and oversee gravity and lateral loads within one project. The software facilitates the creation of frame, truss, or FEA models for nearly any structure type, with functionalities to sketch, create, and import designs from CAD or BIM tools like Revit. With its swift static analysis, P-delta computations, AISC Direct methods, dynamic evaluations, and nonlinear features, it ensures reliable and validated outputs for engineering experts. In essence, VisualAnalysis emerges as a highly adaptable tool, capable of addressing a broad spectrum of engineering challenges effectively. Its user-friendly interface and comprehensive features make it a preferred choice among engineers in various disciplines. -
27
NVIDIA Modulus
NVIDIA
Transforming physics with AI-driven, real-time simulation solutions.NVIDIA Modulus is a sophisticated neural network framework designed to seamlessly combine the principles of physics, encapsulated through governing partial differential equations (PDEs), with data to develop accurate, parameterized surrogate models that deliver near-instantaneous responses. This framework is particularly suited for individuals tackling AI-driven physics challenges or those creating digital twin models to manage complex non-linear, multi-physics systems, ensuring comprehensive assistance throughout their endeavors. It offers vital elements for developing physics-oriented machine learning surrogate models that adeptly integrate physical laws with empirical data insights. Its adaptability makes it relevant across numerous domains, such as engineering simulations and life sciences, while supporting both forward simulations and inverse/data assimilation tasks. Moreover, NVIDIA Modulus facilitates parameterized representations of systems capable of addressing various scenarios in real time, allowing users to conduct offline training once and then execute real-time inference multiple times. By doing so, it empowers both researchers and engineers to discover innovative solutions across a wide range of intricate problems with remarkable efficiency, ultimately pushing the boundaries of what's achievable in their respective fields. As a result, this framework stands as a transformative tool for advancing the integration of AI in the understanding and simulation of physical phenomena. -
28
PROFIS Engineering Suite
Hilti
Streamline your construction designs with intelligent cloud-based solutions.The Hilti PROFIS Engineering Suite is a user-friendly, cloud-based software solution that simplifies the design of structural connections in construction, significantly boosting efficiency through its array of time-saving features. It allows users to create designs for a variety of base materials and applications, such as anchors in concrete, masonry, and concrete over metal, along with post-installed rebar, base plates, and diaphragm shear fasteners for metal deck connections. Not only does this software streamline the design process, but it also offers productivity-enhancing tools like Smart Design anchor layout, load importation, the capability to evaluate multiple load combinations, and the option to generate design templates. New users can take advantage of a free 30-day trial of the premium version or choose the no-cost standard version to get started. Furthermore, the software is tailored to meet the needs of both beginners and seasoned professionals, making it an invaluable asset in the construction field. Its versatility and comprehensive features ensure that it can adapt to various project requirements, ultimately contributing to improved project outcomes in the industry. -
29
SDC Verifier
SDC Engineering B.V.
Streamline structural design with seamless integration and compliance.SDC Verifier is an all-encompassing software solution tailored for structural design, finite element analysis (FEA), and ensuring adherence to applicable design codes and standards. This versatile tool can operate independently or integrate seamlessly with platforms such as Ansys Mechanical, Femap, and Simcenter 3D, thereby augmenting the functionalities available to engineers and designers. Its adaptability makes it a valuable asset in various engineering projects, allowing for enhanced efficiency and compliance in design processes. -
30
Ansys Totem
Ansys
Unmatched power noise verification for reliable mixed-signal designs.Ansys Totem-SC is a prominent leader in power noise and reliability verification specifically designed for analog and mixed-signal architectures, utilizing a cloud-native elastic compute framework to boost performance. Celebrated as the benchmark for voltage drop and electromigration multiphysics sign-off, it is optimized for both transistor-level and mixed-signal designs. With numerous successful tapeouts to its name, the cloud-centric structure of Totem-SC guarantees quick and reliable full-chip analysis capabilities. Its signoff accuracy is recognized by all top foundries for advanced finFET technologies, even at 3nm nodes. As a robust analytical platform for power noise and reliability, Ansys Totem-SC meets the demands of analog mixed-signal IP and fully custom designs effectively. The platform excels in creating IP models for SOC-level power integrity signoff alongside RedHawk-SC, and it also generates compact chip models of power delivery networks that are useful at both the chip and system levels. This widely endorsed solution establishes a high standard for analog and mixed-signal EM/IR analysis, promoting reliability and performance in contemporary electronic designs. Additionally, its advanced capabilities empower engineers to enhance design integrity, making Ansys Totem-SC indispensable in the rapidly evolving landscape of technology.