Innoslate
SPEC Innovations offers a premier model-based systems engineering solution aimed at helping your team accelerate time-to-market, lower expenses, and reduce risks, even when dealing with the most intricate systems. This solution is available in both cloud-based and on-premise formats, featuring an easy-to-use graphical interface that can be accessed via any current web browser.
Innoslate provides an extensive range of lifecycle capabilities, which include:
• Management of Requirements
• Document Control
• System Modeling
• Simulation of Discrete Events
• Monte Carlo Analysis
• Creation of DoDAF Models and Views
• Management of Databases
• Test Management equipped with comprehensive reports, status updates, outcomes, and additional features
• Real-Time Collaboration
Additionally, it encompasses numerous other functionalities to enhance workflow efficiency.
Learn more
Azore CFD
Azore is a software tool designed for computational fluid dynamics (CFD) that focuses on the analysis of fluid movement and thermal transfers. By utilizing CFD, engineers and scientists can numerically tackle a diverse array of problems related to fluid mechanics, thermal dynamics, and chemical interactions through computer simulations. Azore excels in modeling a variety of fluid dynamics scenarios, encompassing air, liquids, gases, and flows containing particles. Its applications are vast, including the modeling of liquid flow through piping systems and assessing water velocity profiles around submerged objects. Furthermore, Azore is adept at simulating the behavior of gases and air, allowing for the exploration of ambient air velocity patterns as they navigate around structures, as well as examining flow dynamics, heat transfer, and mechanical systems within enclosed spaces. This robust CFD software can effectively model nearly any incompressible fluid flow scenario, addressing challenges associated with conjugate heat transfer, species transport, and both steady-state and transient flow conditions. With such capabilities, Azore serves as an invaluable asset for professionals in various engineering and scientific fields requiring precise fluid dynamics simulations.
Learn more
CST Studio Suite
CST Studio Suite represents a sophisticated software solution for 3D electromagnetic (EM) analysis, aimed at streamlining the design, evaluation, and enhancement of numerous electromagnetic systems and components. The platform features a cohesive user interface that integrates solvers capable of addressing a wide array of applications across the complete electromagnetic spectrum. These solvers can be combined for hybrid simulations, allowing engineers the flexibility to thoroughly investigate intricate systems made up of multiple elements. In addition, its compatibility with other SIMULIA products significantly boosts the potential for EM simulations to be seamlessly woven into the holistic design workflow, impacting the development process right from the outset. Common uses of EM analysis encompass testing antenna and filter effectiveness, verifying electromagnetic compatibility and interference standards, analyzing human exposure to EM fields, exploring electro-mechanical relationships in motors and generators, and evaluating thermal effects on high-power devices. This ability to perform such extensive analyses not only fosters innovation but also enhances the capabilities of various sectors that depend on electromagnetic technologies, ultimately leading to more efficient and effective designs. By leveraging the comprehensive features of CST Studio Suite, engineers can push the boundaries of what is achievable in electromagnetic design and analysis.
Learn more
XGtd
XGtd is a sophisticated software designed for electromagnetic analysis, employing ray-based techniques to assess the impact of vehicles or vessels on antenna radiation, predict antenna coupling, and calculate radar cross-section. This software is particularly beneficial for high-frequency applications or large platforms, efficiently managing situations where full physics-based methods would require excessive computational resources. In addition to traditional ray tracing, XGtd incorporates advanced methodologies such as Geometric Optics (GO), the Uniform Theory of Diffraction (UTD), Physical Optics (PO), and the Method of Equivalent Currents (MEC). The software stands out by providing accurate and tailored results for its designated applications, delivering high-fidelity field predictions, even in challenging shadow zones affected by creeping wave phenomena. Furthermore, XGtd offers detailed multipath analysis that takes into account a variety of elements, including reflections, transmissions, wedge diffractions, surface diffractions, and creeping waves, thereby enhancing its value in electromagnetic research. Its comprehensive capabilities and accuracy facilitate a nuanced understanding of intricate interactions within demanding environments, making it a crucial asset for engineers and researchers alike.
Learn more