Azore CFD
Azore is a software tool designed for computational fluid dynamics (CFD) that focuses on the analysis of fluid movement and thermal transfers. By utilizing CFD, engineers and scientists can numerically tackle a diverse array of problems related to fluid mechanics, thermal dynamics, and chemical interactions through computer simulations. Azore excels in modeling a variety of fluid dynamics scenarios, encompassing air, liquids, gases, and flows containing particles. Its applications are vast, including the modeling of liquid flow through piping systems and assessing water velocity profiles around submerged objects. Furthermore, Azore is adept at simulating the behavior of gases and air, allowing for the exploration of ambient air velocity patterns as they navigate around structures, as well as examining flow dynamics, heat transfer, and mechanical systems within enclosed spaces. This robust CFD software can effectively model nearly any incompressible fluid flow scenario, addressing challenges associated with conjugate heat transfer, species transport, and both steady-state and transient flow conditions. With such capabilities, Azore serves as an invaluable asset for professionals in various engineering and scientific fields requiring precise fluid dynamics simulations.
Learn more
Altium Develop
Altium Develop brings together engineers, developers, and manufacturing partners in a single connected workspace. By integrating design tools with real-time collaboration, it ensures that every stakeholder—from hardware and software teams to supply chain managers—can contribute at the right moment. The platform eliminates silos by linking requirements, component data, and production insights directly to the design process. With early visibility and seamless feedback loops, organizations can reduce errors, cut rework costs, and move from idea to finished product more efficiently.
Learn more
Ansys Exalto
Ansys Exalto is a specialized software tool for post-LVS RLCk extraction that aids integrated circuit (IC) designers in accurately detecting unknown crosstalk across different design hierarchy blocks by extracting lumped-element parasitics and establishing a precise model for electrical, magnetic, and substrate interactions. This tool is designed to work seamlessly with most LVS tools and can significantly improve the RC extraction capabilities of your chosen software. By leveraging Ansys Exalto’s post-LVS RLCk extraction features, IC designers can proficiently predict electromagnetic and substrate coupling effects, allowing for the signoff of circuits that were once considered "too large to analyze." The models produced by the software can be back-annotated to the schematic or netlist, ensuring compatibility with all circuit simulators. As the demand for RF and high-speed circuits grows in modern silicon systems, accurately modeling electromagnetic coupling has become increasingly vital, as it plays a crucial role in the success of silicon designs. Therefore, Ansys Exalto proves to be an indispensable tool for designers striving to tackle the intricate challenges of contemporary circuit design with utmost accuracy and efficiency. Furthermore, its capabilities not only streamline the design process but also enhance the reliability of the final product, making it a valuable resource for any IC design team.
Learn more
Sigrity X PowerSI
Cadence®'s Sigrity X PowerSI® technology addresses the escalating challenges associated with switching noise, signal interference, and maintaining target voltage levels. It offers rapid, precise, and comprehensive electrical analyses for complete IC packages and PCBs. This technology can be employed to formulate power and signal integrity guidelines either prior to layout or after, facilitating performance verification and design enhancement without the need for a prototype. Sigrity X's advanced electromagnetic (EM) solver capabilities enable a variety of analyses, such as pinpointing coupling issues with traces and vias, assessing power and ground fluctuations due to simultaneous output switching, and designing areas that meet or exceed voltage specifications. Furthermore, PowerSI technology helps in extracting frequency-dependent parameter models for network configurations while providing visualization of intricate spatial relationships, ensuring that designers can optimize their circuits effectively. This powerful toolset ultimately streamlines the design process and enhances overall product reliability.
Learn more